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I. Introduction

The determination of Glottal Closure Instant (GCI) is an important task in voice signal
analysis. At GCI the vocal folds close the glottis for the airstream coming from the lungs.
By opening and closing the airstream passage the vocal folds generate quasi periodic
impulse source for the vocal tract system. GCI determine the instantaneous voice signal
pitches. They are used for speaker identification, speech recognition, voice pathology
investigations, etc. GCI is of considerable importance for modelling the vocal tract too. The
latter can be assumed a resonant system in free oscillating mode during closed glottis
interval (CGI). In this case the vocal tract can be modeled applying linear prediction
methods [1].

Some of the new methods for GCI determination use wavelet transform (WT)
apparatus. It is well-known that WT are very appropriate for signal abrupt changes
detection [2, 3]. Several types of wavelets have been applied for GCI determination, real
[4, 5] and complex valuated too [6]. The latter determine the signal transients through
transform modulus maxima and equiphase lines. The most commonly used wavelet in this
case is the Morlet wavelet [3, 5, 7]. Unfortunately, its application is complicated because
of large computational costs. Several algorithms for improving the computational
efficiency have been proposed. The most popular among them is known as the algorithm
“a trous” [8]. Another approach uses an approximation of a wavelet with close to Morlet
wavelet features [9].

Novel results for GCI determination with exponentially modulated (EM) wavelet are
reported in the present work. The wavelet has a close to Morlet wavelet form and allows
considerable computational costs reduction without loss of GCI determination accuracy.
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II. Wavelet Transform

1. Definitions

WT is an inner product of the analyzed signal with a basis function which is scaled and
translated to obtain the time-scale (time-frequency) signal representation. Let  s(t) be the
analyzed signal and (t)  the analyzing wavelet. Then WT can be defined as:

       1               t 
(1) W (, a) =   s(t)() dt,

     a      a
where  is the complex conjugate operator, ascale factor; time shift. The equation can
be presented in the frequency domain as follows:

(2)                               W (, a) = a  S(w)(aw)ejw dw
Here S(w) and (w) are Fourier transforms on s(t) and (t), respectively.
Equations (1) and (2) can be interpreted as time-frequency analysis of s(t) with filters

with impulse response (t) and constant relative frequency resolution w/w.
For discrete signals WT assumes the form:

           1    k n/2 i k 
(3) S (k Ts, a) =      s(i)g  ,

     

a   i=k n/2      a 

where Ts is the sampling period, n  the wavelet width in samples at a=1.
The analyzing wavelet must satisfy the following conditions [7]:

a) absolute quadratic integrability (function with finite energy);
b) one-side spectrum (w)=0 for w  0.

2. Morlet  wavelet

The Morlet wavelet is a modulated Gaussian added some correction terms for zero
mean value:

(4) (t)= (eict  ec2/2) et2/2.

Its  frequency  characteristics  is  shifted  Gaussian:

(5) (t)= 

2

 [ e(wc)2/2  ew2/2  ec2/2 ].

The parameter c is usually chosen by the condition requiring the two highest maxima
ratio to be equal to zero. The choice of c close to 5 makes the second term negligible and
it can be practically omitted.

Judging from the wavelet equations and its frequency characteristics one can see that
it is well localized both in time and frequency domains. Its symmetric form assures linear
phase characteristics. If the second term in (4) is omitted the wavelet loses its zero mean
value and does not satisfy the admissibily condition b) [7]. For c = 5, (0)= 


2

 e52/2

9106  which assures a good approximation. The wavelets for 4 successive dyadic scales
are presented in Fig. 1 together with the corresponding spectra.

The Morlet wavelet is complex valuated and implemented to a real valuated signal
leads to decomposition with complex coefficients. Thus a two time-frequency representa-
tions (in modulus and phase) can be performed [10].

WT computation using Morlet wavelet can be performed replacing formula (3) by
the discrete convolution of the discrete signal and sampled wavelet for each scale a. Scale
growth causes wavelet dilation which increases the multiplications number for each scale.
For dyadic scale change (a= a0, 2 a0, 4 a0, . . . ) the multiplications increase with powers
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of two. For example, the eight scale corresponds to 256 times the multiplications of the
starting scale. So, the need for more effective algorithms is obvious. One of the most popular
and commonly used algorithms is the algorithm “a trous”. It reduces the multipications in
formula (3) retaining just the even wavelet samples in each scale transition [8]. For
compensation of the information lost due to omitting of every odd sample a signal low-pass
filtering with second order Lagrange interpolator is performed [8]. A disadvantage of the
“a trous” algorithm is that for a desired scale decomposition one must calculates low-pass
filtering for all previous dyadic scales.

3. Exponentially  modulated  wavelet

The exponentially modulated (EM) wavelet has been proposed in [9] as a result from the
search for a form close to Morlet wavelet.

It is an even function:

(6) (t)= (1 + t )et  eict.

Its frequency characteristics is the following:

         43
(7) (w)= 

 [ 2 + (w c)2 ]2

The admissibility condition verification shows that this wavelet has higher zero
frequency value than the Morlet wavelet. This might cause problems in signal restoration
from its wavelet decomposition. For instance, if =1 and c=8,  (0)=9104. However,
for analysis purposes it gives acceptable results due to its good time and frequency
localization.

For easier implementation EM wavelet can be presented as a superposition of two
semi-wavelets: causal and non-causal, respectively, in view of current scale

(1 + t ) et/a eict/a   for t  0,
(8a) (t, a)=

0   for t 0,

(1  t ) et/a eict/a   for t 0,
(8b) (t, a)= 

0   for t 0.

The two semi-wavelet transforms in z-domain are as follow:

      1 + a1z1
(9a) (z) =  

 1 + b1z1 + a2z2

               a'1z + a'2z2
(9b) (z)=(z1) (0) =  

           1 + b'1z + b'2z2

where:
a1 = ( Ts/a  1)  eic)Ts/a ,

       b1 = 2  eic)Ts/a ,

             b2 = eic)Ts/a ,
              a'1 = a*1 b*1 ,
              a*2 =  b*2 ,
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b'1 = b*1 ,

b'2 = b*2 ,

If we represent equation (3) in z-domain replacing convolution with multiplication
and the wavelet with its z-images, we should obtained a recurrent formula for WT
calculation:

      S+(k,a) = s(k) + a1 s(k  1)   b1S+(k  1)   b2S+(k  2),

(10) S(k,a) = a'1 s(k + 1) + a'2 s(k + 2)   b'2S(k + 1)  b'2S(k + 2),

       S(k,a) = 

1/

a [S+(k,a) + S(k,a)].

The complexity analysis leads to the following conclusions:
1. Multiplications number does not depend on the scale factor a.
2. To obtain a wavelet coefficient we need 11 multiplications, so the complexity

is relative to signal length N.
3. The algorithm does not require a wavelet cutting and allows arbitrary choice

of desired scale without calculation of higher scales.

III. Experimental results

Synthesized and natural signals corresponding to voiced sounds for applicability investi-
gation of EM wavelet to GCI determination have been used.

For signal synthesis the Fujisaki-Ljngqvist (FL) model for differentiated glottal
waveform (DGW) generation has been used [11]. FL model gives the opportunity to change
the pitch periods of generated DGW as well as the close-to-open phase ratios. DGW have
been used with pitch periods from 71 to 50 samples (from 162 Hz to 230 Hz at sampling
frequency 11500 Hz). They cover the middle range of male and female pitches.

The natural signals have been recorded through direct analog-to-digital conversion
at 11500 Hz sampling frequency and 16 bit resolution using sound card Z1 of Antex
Electronics. A microphone AKG D330BT with high-frequency filtering at 50 Hz has been
used. In this case the low-pass noise due to breathing has been excluded.

Four natural vowels /a/, /e/, /i/, /u/ for different pitches have been examined.
Apart from wavelet method a Frobenius norm approach has been applied. It is known

as the most accurate method for GCI determination and has been used for making
comparisons of GCI determination accuracy via WT for natural signals.

The time-frequency plane tilings of WT phase characteristics for six octaves and three
“voices” per octave have been obtained. They have been compared to the corresponding
tilings got using the Morlet wavelet [6]. The comparison has shown that there is any
noticeable difference between the tilings and in both cases equiphase lines lead to GCI.

The developed algorithm allows arbitrary choice of the desired scale to obtain a WT
modulus decomposition. According to the relation between scale and frequency (the
reciprocal value of the scale is equal to the frequency) we can interpret the results from the
physiological voice production point of view. It is well-known that the first formant
resonance appears first after the glottis closure [1]. This fact enables the investigation of
signals just for scales corresponding to the first formant and pitch frequency.

The first formant and pitch octave signals for synthesized signal analysis are
presented in Fig. 1. The excitation source is presented too. The first formant signal has
maxima corresponding to GCI. The pitch signal maxima are shifted towards the closed
glottis intervals. The results for natural signals are similar. Fig.2 represents such a WT
together with the Frobenius measure curve.
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EM wavelet decomposition reacts adequately for non-stationary signals too. A scale
close to the first formant must be used. Such a case is presented in Fig. 3. Because of the
pitch changes the scale close to the pitch does not detect GCI well enough. Like other
wavelets [4] EM wavelet decomposition is not influenced by noises in the analyzed signal.

IV. Conclusions

EM wavelet is close in form to the Morlet wavelet. For this reason one can proceed as in
case of Morlet wavelet decomposition obtaining complex (by modulus and phase) time-
frequency tiling for successive octaves and “voices” per octave. The computational costs
will be increased in this case but less than in the case with the Morlet wavelet.

The calculation algorithm is attractive because it allows using arbitrary scale. This
is very useful in cases when the first formant is known or can be determined easy. Its value
can be used for scale setting which leads to accurate results in GCI determination. It is not
suitable to use scale close to the pitch frequency because such scale is sensitive to signal
nonstationarities.
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Повышение вычислительной еффективности при определении
момента закрытого глотиса при помощи волновой транформации

Здравко Николов, Атанас Гочев

Институт информационных технологий, 1113 София

(Р е з ю м е)

Работа обсуждает актуальную проблемму исследования звуковых сигналов при
помощи трансформации в разных пространстьвах. Выбрана волновая транс-
формация, а основная цель работы повысить вычислительную еффективность,
применяя комплексные волны и получая декомпозиции в модуле и фазе во времево-
масштабной плоскости. Предложена волна, сходная известной волне Морлета,
которая описана в z-области. При помощи предложенного алгоритма декомпозиции
исследованы синтезированные и естественные сигналы. Экспериментальные
результаты показывают точность метода при нестационарных сигналах и при
наличии шума.


