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1. Introduction

The determinationof Glottal Closure Instant (CCI) isan inportant task inwvoice signal
analysis. AtGCl thevocal foldsclose theglottis for theairstreamocoming franthe lungs.
By opening and closing the airstream passage the vocal folds generate quasi periodic
impulse source forthe vocal tract system. CCI determine the instantaneousvoice signal
pitches. Theyare used for speaker identification, speech recognition, voice pathology
investigations, etc. GCl isafconsiderable inportance formodel 1 ing thevocal tracttoo. The
latter canbe assumed a resonant system in free osci l latingmode duringclosed glottis
interval (CGI) . Inthiscase the vocal tract can bemodeled applying linear prediction
methods [1]-

Some of the new methods for GCI determination use wavelet transform (WT)
apparatus. It iswell-known that WT are very appropriate for signal abrupt changes
detection [2, 3].- Several typesofuwavelets have been appl ied for CCI determination, real
[4, 5] and carplexvaluated too [6] - The latter determine the signal transients through
transformmodulus maximaand equiphase lines. Themost commonly usedwavelet in this
case istheMorletvavelet [3, 5, 7] .- Utfortunately, itsgpplication iscomplicated because
of large computational costs. Several algorithms for improving the computational
efficiency have been proposed. The most popular anong them is known as the algoritim
“atrous” [8] .- Another approachuses anapproximation of avaveletwith close toMorlet
vaeletfeatures[9].

Novel results for GCI determinationwirth exponential lymodulated (BV) wavelet are
reported inthe presentwork. Thewavelet hasaclose toMorletwavelet formand allons
oconsiderable computational costs reductionwithout oss of CCI determinattionaccuracy -

*Thiswork is supported by National Science Fund under Contract 1 527/95.
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11 Wavelet Transform

1.Definrtios

WT isan inner product of the analyzed signal withabasis functionwhich isscaledand
translated todbtain the time-scale (time-frequency) signal representation. Let s(H bethe
analyzed signal and ¢ (t) — theanalyzing wavelet. ThenWT can bedefined as:

1 t-
o W, @)= —Jéi S(Dg (——;T) dt,

where* isthe carplexconjugate operator, a—scale factor; t—timeshift. Theequationcan
be presertted in the frequency domainas fol lows:

) W (z, a) = Va] Sy (aw)ei dw

Here S(w) and ¥ (W) are Fourier transforms on s(t) and o (t) , respectively.

Equatios (D) and (2) canbe interpreted as time-frequency analysisof s(Hwith filters
wirth impulse response o (t) and constarnt relative frequency resollution AwAv.

For discrete signalsWT assumes the form:

1 fnlz ( i -k )
(&) S(kTs,a)= — s(g+ | —— |,

S Na izk-ns2 L a )
where Tg is the sampling period, n—thewaveletwidth insamplesata=1.
Theanalyzingwaveletmust satisfy the fol lovingconditions [ 7] -

a) asolutequadratic integrabi ity (functionwithfiniteeneryy) ;
b) one-side spectrum ¥ (W)=0forw<0.

2. Morlet wavelet

TheMor let wavelet is amodul ated Gaussian added same correction terms for zero
meanvalue:

(4) (P(t): (eiCt — e—CZ/ 2) e—tz/ 2
I'ts frequency characteristics is shifted Gaussian:
() y()=1\2r [eWOY2_ g#/2_ /2]

The parameter c is usual ly chosen by the condition requiring the two highestmaxima
ratiotobe equal tozero. The choiceof ¢ close to Smakes the second termnegligibleand
rtcanbepractical lyamirtted.

Juaging franthewavelet equattionsand its frequency dnaracteristicsonecansee that
itiswell localizedboth in timeand frequency domains. Itssymmetricformassures linear
phase characteristics. 1T thesecond termin (@) isomitted thevavelet loses itszeromean
value and does not satisfy the admissibi ly conditionb) [7]. Forc=5, y(0)=\2re-5/2
~9x10-6 whiich assures a good approximation. Thewavelets for 4 sucoessivedyadic scales
arepresented inFig. 1 together with the corresponding spectra.

TheMorletwavelet is conplexvaluated and implemented toareal valuated signal
leads todecarpositionwithcorplexcoefficients. Thusatwotime-frequency represernta—
tions (inmodulusand phase) can be performed [10] -

WT computation using Morlet wavelet can be performed replacing formula (3) by
thediscrete convolutionof thediscrete signal andsanpledwavelet foreachscalea. Scale
gronth causesvavelet dilationwhich increases thenultiplicationsnurber foreach scale.
Fordyadicscale change (a=ag, 28, 48y, - - - ) themultiplications increasewith porers
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of two. Forexanple, theeight scale corresponds 10 256 times themultiplicationsof the
startingscale. So, theneed formoreeffectivealgoritins isovious. Oneofthenost popullar
and comonly usedalgorithms isthealgoritm“atrous”. Itreducesthemultipicationsin
formula (3) retaining just the evenwavelet samples ineach scale transition [8] - For
campensationofthe information lostdue toanitting ofevery odd sarpleasignal lovass
filteringwith secondorder Lagrange interpolator is performed [8] - Adisadvantage of the
“atrous’algoritim isthat foradesired scale decompositiononenust calculates lov-pass
filteringforall previousdyadicscales.

3. Bxporential ly modulated wavelet

The exponential ly modulated (BV) wavelet has been proposed in [9] asaresult fronthe
searchforaformclose toMorletwavelet.
Itisanevenfunction:

© y(O=(+o[tDeoltleict,
Itsfrequencydnaracteristics isthe fol loving:

0 Y= e :
[+ W-CPP

Theadmissibi lity conditionverification shons that thiswavelet hashigher zero
frequencyvalue thantheMorletwavelet. Thismight cause problems insignal restoration
from itswavelet decomposition. For instance, ifo=1landc=8, ¥(0)=9x104. Honever,
for analysis purposes itgives acceptable results due to its good time and frequency
localizztom.

For easier implementation BMwavelet can be presented as a superposition of two
sami-vavelets: causal andnon-causal, respectively, inviewofcurrentscale

<[(1+cst) eoWagict/a for >0,

((52)) y(t,a=
0 for t<0,
(l-ot)eotagict/a for t<0,
@ v (L, aF
0 for £t>0.
The two semi—-wavelet transforms in z-domainare asfollow:
1+a,z1
(%) \V+(Z) - - N
1+byzl+a,z2
a“z+a",z2
CY) V-@ry (@D -y ()= ———————— :

1+b"z+b",z2

where:
a;=(cTg/a-1) elo-io)Ts/a,

b, =—2 e{c- ico)Ty/a,
b2 = e2(c-ic)Ts/a,
a“j=a*% -b%,
a*2 = _ b*% ,
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b.l = b*l >
b =b%,
Ifve representeguation (3) inz-domainreplacingconvolutionwithmultiplication

and the wavelet with its z-images, we should obtained a recurrent formula for WT
calaulation:

S, (k,a)=s(k) +a;s(k-1) - b;S,(k-1) - b,S,(k-2),
@ sk,a)=a"1sk+1)+a",s(k+2)- b",S (k+1)-b".S (k+2),

S(k,a) =\1/a[S,(k,a) +S (k,a)] -

The conplexityanalysis leads to the fol loving conclusions:
1. Multiplications number does not depend on the scale factor a.
2. Todotainavaveletcoefficientweneed 11 multiplications, sothe conplexity
isrelativetosigal lengthN.
3. Thealgorithmdoes not require avavelet cuttingand al lonsarbitrary choice
of desiredscalewithoutcalculationofhigher scales.

111. Bqerimental results

Synthesizedand natural signals correspording tovoiced sounds forgplicabil ity investi-
gation of EMwavelet to GCI determination have been used.

For signal synthesis theFuj isaki-Ljnggvist (L) model for differentiatedglottal
waveform (DGN) generation hasbeenused [11] - FLmodel gives the opportunity to change
the pitch periods of generated DGV aswel I as the close-to-open phase ratios. DGVhave
been usedwith pitch periods from 71 to 50 samples (from 162 Hz t0 230 Hz at sampl ing
Trequency 11500 Hz) - They cover the middle range of male and female pitches.

The natural signals have been recorded throughdirectanalog-to-digital conversion
at 11500 Hz sampl ing frequency and 16 bit resolution using sound card Z1 of Antex
Electronics. Amicrophone AKG D330BT with high-frequency i Itering at 50 Hz has been
used. Inthiscase the lonpass hoise due tobreathinghasbeenexcluded.

Faurnatural vonels/a/, /e/, 71/, /u/ for different pitches havebeen examined.

Apart fronvwavelet method a Frobenius norm approachhas beenapplied. 1t isknomn
as the most accurate method for GCI determination and has been used for making
comparisons of GCI determinationaccuracy viaWT for natural signals.

Tretime-frequency planetilingsofWT phase characteristics forsixoctavesand three
“voices” per octave have been obtained. They have been compared to the corresponding
tilingsgot using the Morletwavelet [6] - The comparisonhas shown that there is any
noticeable difference between the ti lings and inbothcases equiphase lines lead to CCI .

The developedalgoritmal lons arbitrary choice of thedesired scale to dotainaWT
modulus decomposition. According to the relation between scale and frequency (the
reciprocal value of the scale isegual tothe freguency) wecan interpret the resultsfromthe
physiological voice production pointofview. Itiswell-knownthat the First formant
resonance gopearsfirstaftertheglottisclosure [1] .- Thisfacterebles tre investigationof
signals justfor scales corresponding to the first formantandpitch frequency .

The First formant and pitch octave signals for synthesized signal analysisare
presented inFig- 1. Theexcitationsource is presented too. The first formartsignal has
maxima corresponding toGCl . The pittch signal maxima are shifted towards the closed
glottis intervals. The resultsfor natural signalsaresimilar . Fig-2represents suchaWT
‘together with the Frobeniusmeasure cunve.
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Bvwavelet decomposition reacts adequately for non-stationary signalstoo. Ascale
closeto the first formantmustbeused. Suchacase is presented inFig.- 3. Becauseof the
pitch changes the scale close to the pitch does not detect CCI wel I enough. Like other
wavelets [4] Bvivaveletdecorposition is not inflluenced by noises intheanalyzed signal .

IV. Conclusions

Bvwavelet is close informto theMorletwavelet. For this reasonone canproceedas in
case of Mor letwavel et decomposition obtaining complex (by modulus and phase) time-
Trequency tiling for successive octaves and“wices”” per octave . Thecomputational costs
wi Il be increased inthis case but lessthan inthe casewith theMorletvwavelet.

The calaulationalgoritim isattractive because ital lossusingarbitraryscale. This
isveryuseful incaseswhenthe firstformant isknomnorcanbedeterminedeasy. Itsvalue
canbeused for scale settingwhich leads toacourate results inCCl determination. Itisnot
suitable touse scaleclose tothe prtch frequency because such scale is sersitive tosignal

References

l1.Mapxke, Ix., A. I'p e 1. JIMHeNHOe Npenckasanue peun. M., Cea3b, 1980.

2_Mallat, S., W. L. Hwang. Singularitydetectionandprocessingwithwavelets. — IEEE Trans. Inform.
Theory, 38, 1992, 617-643.

3.Kronland-Martinet,J.Morlet, A.Grossman. Analysis of sound patterns throughwavelet
transform. —J. PatemRecognitionand Artifical Intell _, 1, 1987, 273-302.

4. T oue B, A. OnpenesisHe MHTEPBAJIMTE Ha 3aTBOPEH IVIOTHC Upe3 BRIHOBA TpaHchopMalusa. — TexH.
e, 1995, 28-42.

5.Cadambe, S.,G.Bodreaux-Bar tels. Aconparisonofawavelet functions for pitchdetection
of speechsignals. — In: Proc. ICASSP, 1991, 449-452.

6.Nikolov Z.,A.Gotchev. Detectionofglottal closure instantviaphase characteristics ofwavelet
transform. —In: Proc. Int. AMSE Conf. “Sys”94"", 1994, Lyon, France, 133-144.

7.Grossmann,A., J.Mor let. DecompositionofHardi functions into square integrable wavelets of
constant shape. —SIAMJ. of Math. Analysis, 1984, 15, 725-736.

8.Holshneider,M.,R.Kronland-Martinet,J.Morlet, P.Tchamitchian.Areal time
algorithmfor signal analysiswiththe helpof thevavelet transform. — In: Wavelets, time-freguency
methods and phase space. Springer-Verlag, 1989, N.Y., 286-297.

9.Barrat, M., 0. Lepetit. Calcul rapidede la transformite en ondelettes. — Traitement dusignal, 1991,
8, 43-49.

10.Grossmann, A.,R.Kronland-Martinet, J.Mor I et. Reading and understanding continuous
wavelet transforms. —In: Wavelets, Time-Frequency Methods and Phase Space. Proc. Int.
conf. ,1987, Marseille, France, 2-20.

11. Fujisaki,H. ,M.Ljungqvi st. Proposal and evaluationof models for the glottal sourcewaveform.
—1In: Proc. ICASSP, 1986, 1605-1608.

12_Ma, C.,Y.Kamp, L. F.Wi I Iems. Afrobenius normapproach to glottal closure detection from the
speech signal . —In: IEEE Trans. Speech and AudioProc. , 1994, 2, 258-265.

45



[IoBBIIEHME BEUMCIMUTEIbHOM ePPEKTUBHOCTHM NIPU ONpenesieHun
MOMEHTa 3aKPEITOT'O TJIOTHCA IIPM IIOMOLIM BOJIHOBOM TpaHbopMalym

BnpaBko HukoJioB, ATaHac I'oueB

UHCTUTY T MHPOPMALIMOHHEIX TexHoJormit, 1113 Copus

(PeswomMme)

PaboTa obcyxIaeT aKTyaJlbHYI [MPOOJIEMMY MCCIJIENOBaHYA 3BYKOBEIX CUI'HAJIOB [IPU
IOMOLIM TpaHChopMallyy B Pa3HBIX IPOCTPAHCTEBaxX . BelOpaHa BOJIHOBAS TPaHC—
dopMalMsg, a OCHOBHASA LIeJlb Pa®OTHL ITIOBEICUTE BEUUCIIUTEIIBHYI0 ebOEeKTMBHOCTE,
IPMMEH ST KOMITJIEKCHBIE BOJIHEL U [TOJTyda s IeKOMITO3MLIM B MOITYJIE U da3e BO BPEMEBO—
MacumTabHOM IIJIOCKOCTU . [IpemyioxeHa BoJIHa, CXOOHAsA U3BECTHOM BoJiHe MoprieTa,
KOTOpas oIMcaHa B Z—-o0J1acTi. [Tpy IOMOLM MPeFIOKEHHOT'O aJIlOpUTMa NTEKOMIIO VLI
VCCJIEIOBAHEL CUHTE3UPOBAHHEIE M eCTECTBEHHBIE CUTHAJEL. DKCIIEPUMEHTaJIbHEIE
PEeBYIIbTAaTH [TIOKABEBAIT TOYHOCTE METOHa [IPM HECTALIMOHAPHEIX CUTHaJIax U [IpK
HaJUMY MyMa .
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