БЪЛГАРСКА АКАДЕМИЯ HA HАУКИTE . BULGARIAN ACADEMY OF SCIENCES

| ПРОБЛЕМИ | НА ТЕХНИЧЕСКАТА | КИБЕРНЕТИКА | И РОБОТИКАТА, 46 |
| :--- | :---: | :---: | :--- | :---: | :--- |
| PROBLEMS | $4 F$ | ENGINEERING CYBERNETICS AND | ROBOTICS, 46 |

Experimental Investigation of Pose Repeatability of Manipulating Robots

Hristo Dimov, Velichko Dobrinov, TonyBoiadjiev

Central Laboratory of Mechatronics and Instrumentation, 1113Sofia

Main characteristics, which defineabilities of implementationofmanipulating industrial robotsare [1] :

- pose accuracy and repeatability
- posestabilizationtime
- pose overshoot
- minimumpositioning time
- drift of pose accuracy
- path accuracy and repeatability
- path velocity accuracy and repeatability

In implementations where the path accuracy and repeatability is not so important, the sufficient characteristics are pose accuracy and repeatability.

In this publication the object is experimental investigation of pose repeatability of manipulating robot SCARA type.

PoseRepeatability

Parameters, which characterizemanipulating robots inpositioning the endeffector into working space are definited from the deviations between task and achievedposition, due tomechanical mistakes., friction, chisteresis, programmingmistakes dependingby the methods of control, and other environmental influences.

Pose repeatability shows the degree of deviation of coordinates andangles after n times positioning in the samepoint and in the same order of changing of coordinates .i.e. executing of the trajectory in the same way.

Pose repeatability for given point is defined from the value of theparameter r, which is the radius of sphere into which the endeffector goes, and it is calculated from the equation:
(1)
where
(2)
(3)
(4)
are thecoordinates of the center of the area, calculatedafter repeatingthe taskposentimes, and x_{j}, y_{j}, z_{j} are the coordinates of j-th achievedpose; $j=1, \ldots, n$-number of cycles.

Investigation of pose repeatability of manipulating robots must be done in conditions given in [1], andshortly are:

- measures aremade in 5 task poses, situated in aplane into a cube intoworking space that is usedmostly.; sides of the cubemust be parallel tobasic coordinate system; when the robot executes variety ofmovements in one axis, which are small enough to the arcs, cube may be replacedwith a right angledparallelepiped. . The first taskpoint is the crossing point of its diagonals.
- measurements are made in 100\% of the limited load
- measurements are made with maximal velocity of the robot
- minimal number of cycles of each point is 30 .

Experimental Scheme

Experimental scheme for the investigation of the pose accuracy and repeatability of manipulating robot is given in Fig.1.

Fig.1. Experimental scheme

The object if investigation in this case is manipulating assembling robot PEM 10-01 SCARA type. D.C. motors are used for turning modules. Pneumatic cylinder is used for Z-axis and possible positions are 2-up and down. Working space of the robot is restricted from the angles of rotation of turningmodules: $R_{1}-200^{\circ}, R_{2}-155^{\circ}$. It is a part of aplane, perpendicularto the axes of the two turning cinematic pairs, which could be situated in two positions, distanced 150 meach from the other due to the two fixed positions of the translation cinematic pair. The other elements from the experimental scheme are given in details in [2] .

Experimentaldata

Having in mind the type of working space of the robot PEM 10-01 and experimental conditions given above, themeasuredposes are situatedinto a rectangular parallelepiped. The first pose is the crossing point of the diagonals and its sides are parallel to axes $O \vec{x}, O \vec{y}$ in the basic coordinate system.

Numerical data from the experimental investigation of pose repeatability of manipulating robot PEM 10-01 for poses P1-P5 are given in Appendix 1.

The results in Appendix 1 are calculated from the equations (3) and (4)
The results for thepose repeatability of themanipulating robot, calculated from the equations (1) and (2), (on the base of the data from Appendix 1 and Appendix 2 are given in Table1.

All numerical values in the tables are in $\mu \mathrm{m}$

Table1. Pose repeatability

Conclusion

The abovementionedmethod for investigation of pose repeatability ofmanipulating robots couldbeusedboth for experimental testing of pose repeatability of existingmanipulating robots, and for new structures.

The result of testing the assembling robot PEM10-01 are in the values, given in its technicalcharacteristics.

References

1. ISO/DIS 9283.
2. D. Uzunova, T. Boiadjiev, I. Stoianov. Investigation of pose accuracy of manipulating robots.

Scientific session "Mechatronica 96", 04-07.06.1996, Drianovo, Bulgaria.

Экспериментальное исследование позиционной повтаряемости манипуляционных роботов

Христо Димов, Величко Добринов, Тони Бояджиев
Центральная лаборатория мехатроники и инструментации, 1113 София
(Ре зюме)
В работе показаны исследования позиционной повтаряемости манипуляционных роботов, которые могут применяться при экспериментальных тестах существующих манипуляционных роботов и новых структур. Представлены результаты манипуляционного робота PEM 10-01.

