
 

 

  
Abstract—The current paper describes one-dimensional cutting 

stock model for joinery manufacturing. The joinery elements differ in 
size and number that are specific for each particular project. The goal 
is to determine the optimal length of blanks (which are usually 
ordered with equal size in large quantities) in order to satisfy the 
demand for all joinery elements. Along with this, it is necessary to 
find the optimal cutting patterns that minimize the overall trim waste. 
For the goal, one-dimensional cutting stock model for joinery 
manufacturing using combinatorial optimization is proposed. 
Numerical example of real-life problem is presented to illustrate the 
applicability of the proposed approach.  
 

Keywords—Combinatorial optimization model, joinery 
manufacturing, linear programming model, one dimensional cutting 
stock problem.  

I. INTRODUCTION 
HE cutting-stock problem has many applications in 
industry. This problem arises when the available material 
has to be cut to fulfill certain goals as cutting patterns with 

minimal material waste and cost efficient production, higher 
customer satisfaction, etc. In general, cutting stock problems 
consist in cutting large pieces (blanks), available in stock, into 
a set of smaller pieces (elements) accordingly to the given 
requirements, while optimizing a certain objective function. 
These problems are relevant in the production planning of 
many industries such as the metallurgy, plastics, paper, glass, 
furniture, textile, joinery manufacturing, etc. In the last four 
decades cutting stock problems have been studied by an 
increasing number of researchers [1]-[5]. The interest in these 
problems is provoked by the many practical applications and 
the challenge they provide to researchers. On the first glance 
they are simple to formulate, but in the same time they are 
computationally difficult to solve. It could be summarized 
that: cutting and packing problems [6] belong to the class of 
NP-hard problems; solution of these problems extensively 
uses mathematical programming and combinatorial methods; 
many real-life problems are computationally hard and can be 
formalized only as NP-hard problems. The continuous growth 
of the prices of the materials and of the energy requires 
minimization of the production expenses for every element.  
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Most materials used in the industry are supplied of standard 

forms and lengths, and direct use of such forms is most cases 
are impossible. They should be cut in advance to some size, 
expected to be optimal in the sense of trim waste. This can be 
done using various methods of cutting planning. The problem 
of optimal cutting is that different size elements have to be 
manufactured using blanks of single standard size. This 
demands developing of methods for optimal cutting of source 
material. The one-dimensional cutting stock problem (1D-
CSP) is one of the crucial issues in production systems, which 
involve cutting processes. The classical 1D-CSP addresses the 
problem of cutting stock materials of length in order to satisfy 
the demand of smaller pieces while minimizing the overall 
trim loss. Kantorovich first formulates 1D-CSP [7], [8] and 
Gilmore and Gomory [9], [10] propose the first solution 
methodology for the cutting stock problems.  

In most cases, cutting stock problem is formulated as an 
integer linear programming optimization problem that 
minimizes the total waste while satisfying the given demand 
[11]. In [12] a review of some linear programming 
formulations for the 1D-CSP and bin packing problems, both 
for problems with identical and non-identical large objects, is 
presented. It is investigated haw different ways of defining the 
variables and structure of the models affect the solvability of 
problems. Because of NP-hard nature of cutting stock 
problems finding an optimal solution in reasonable time is 
essentially difficult and often researchers turn to heuristic 
algorithms to deal with this kind of complex and large-sized 
problem [3], [13]. Some researchers look for solutions of 1D-
CSP in which the non-used material in the cutting patterns 
may be used in the future, if large enough [4] . A two-stage 
decomposition approach for 1D-CSP is proposed in [14]. In 
the first stage is performed calculation of the total number of 
patterns that will be cut and generation of the cutting patterns 
through a heuristic procedure. On the second stage optimal 
cutting plan is determined. In [15] a new approach to cutting 
stock problem is proposed where a ‘‘good’’ solution is seeking 
for consecutive time periods. It is adjusted to situations where 
useful stock remainders can be returned to the warehouse 
between time periods and used lately for other orders. A 
similar problem for wood industry is described in [16]. It is 
stated that cutting problems from the practice usually have its 
own specificity that do not allow the application of known 
models and solution algorithms. In many cases, proper 
modifications are needed or even completely new methods 
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have to be developed on order to cope with real word 
requirements. 

The current paper proposes new approach for optimization 
of real-life 1D-CSP from the joinery manufacturing practice. 
A combinatorial optimization task is formulated to determine 
the optimal length of the blanks and optimal cutting patterns in 
sense of minimal waste. In contrast to other 1D-CSPs, the 
optimal length of the blanks and optimal cutting patterns are 
defined simultaneously as a result of single optimization task 
solution. A proper algorithm for practical application of the 
proposed approach is defined and numerically tested using 
real-life data.  

II. PROBLEM DESCRIPTION 
Aluminum or PVC blanks usually are supplied from the 

factory with fixed length of 6 meters. These blanks are used to 
cut out different elements of joinery. The joinery elements 
differ in size and number that are specific for each particular 
project. The goal is to determine the optimal length of blanks 
(which are usually ordered with equal size in large quantities) 
in order to satisfy the demand for all joinery elements. Along 
with this, it is necessary to find the optimal cutting patterns 
minimizing the waste. In [17] an in-depth investigation of 
joinery modules used in a wide range of buildings is 
performed. It was found that the number of joinery types in 
the apartments could be reduced to a certain number of unified 
modules. For example, in case of a middle size flat, these 
modules involve four modules:   
• Module 1 is used for 4 doors with dimensions 2200 mm x 

730 mm  
• Module 2 is used for 2 doors with dimensions 2000 mm x 

650 mm  
• Module 3 is used for 1 window with dimensions 1400 mm 

x 1400 mm  
• Module 4 is used for 2 windows with dimensions 1700 

mm x 2100 mm  
The investigated cutting stock problem can be narrowed 

down to definition of optimal length of blanks and optimal 
cutting patterns for modules used in an apartment. The 
problem can be described as follows: a factory has to fulfill 
order of blanks with certain length needed to assemble a given 
number of modules, consisting of elements with known length 
and number. For the sake of simplicity of the presentation only 
casement elements for the modules in the example above are 
summarized as a manufacturing order shown in Table I.  

In practice, all PVC and aluminum profiles for doors and 
windows come with fixed length of 6 meters. However, this is 
not mandatory requirement and it is possible to order blanks 
with different length. There are no obstacles to order to the 
manufacturing company to produce a number of blanks with 
different length than standard 6 meters – for example any 
length between 5 and 7 meters. When the optimal length of 
blanks is determined, the next step is to define the optimal 
cutting patterns of joinery elements for each blank. 

 

TABLE I 
JOINERY ELEMENTS LENGTH AND DEMAND  

Element j Length li, mm Demand ki,j 

1 l1 = 650 4 
2 l2 = 730 8 
3 l3 = 1400 4 
4 l4 = 1700 4 
5 l5 = 2000 4 
6 l6 = 2100 4 
7 l7 = 2200 8 

 
The problem of optimal joinery manufacturing can be 

investigated as 1D-CSP by means of proper mathematical 
modeling.  

III. MATHEMATICAL MODEL FORMULATION  
The described one-dimensional cutting stock problem for 

joinery is formalized via combinatorial optimization model. In 
contrast to other similar models it allows determining optimal 
length of blanks and optimal cutting patterns minimizing the 
trim loss, accordingly given demands of joinery elements. 
This type of functionality of the model requires introducing of 
inequalities for each of blanks. That means there is a necessity 
of knowing in advance the number N of the blanks. Number N 
can be calculated as overall demand of joinery elements 
divided by the length L of the blanks. On the other hand, the 
length L of the blanks is to be determined after solution of the 
optimization task. This “recursive” type of problem can be 
overcome taking into account that length L will have some 
value close to the standard length of 6 meters. Having this in 
mind, number of blanks N can be calculated as overall demand 
of joinery elements divided by the length of 6 meters, rounded 
to integer value. Then this value of N can be used to formulate 
the optimization task as: 
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where N is number of blanks; L is length of blanks; Li is the 
utilized length of each blank; lj is length of joinery elements; 
xij are decision variables assigned to each element for 
particular blank; kij represents the demand of each element.  

The objective function (1) minimizes the sum of trim loss 
for each blank. The optimal cutting pattern for each of the 
blanks is defined by decision variables xij in (2). Depending on 
the given particular joinery project, the decision variables (6) 
could be binary integer variables or integer variables. For 
example, if the number of the blanks is less than the maximum 
demand of some element, then the decision variables xij are to 
be considered as integers. This statement allows the model to 
allocate more than 1 element within cutting pattern in the 
blank to satisfy the elements demand. This elements demand 
is satisfied by (4). Deviation from the standard length of 6 
meters is represented by  ∆min and ∆max both approximately in 
the range of 1 meter.  

IV. NUMERICAL ILLUSTRATION  
The demand of elements for the example of joinery 

manufacturing order from Table I is illustrated in Fig. 1. 
 

 
Fig. 1. Joinery elements and demand  

 
Using the input data from Table I the following steps are 

performed:  
1) Determination of total length of all elements considering 

their demand Lsum = 54840 mm;  
2) Determination number of blanks N as rounded to integer  

result of the total elements length 54840 mm divided by 6000 
mm as 54840/6000 = 9.14 => N = 9 and setting of deviations 
 ∆min = ∆max = 1000 mm.   

3) Formulation of optimization task: 
 

min {(L – L1) + (L – L2) + (L – L3) + (L – L4) + (L – L5) + 

     + (L – L6) + (L – L7) + (L – L8) + (L – L9)} 
(7) 

subject to 
x11l1 + x12l2 + x13l3 + x14l4 + x15l5 + x16l6 + x17l7 = L1 
x21l1 + x22l2 + x23l3 + x24l4 + x25l5 + x26l6 + x27l7 = L2 
x31l1 + x32l2 + x33l3 + x34l4 + x35l5 + x36l6 + x37l7 = L3 
x41l1 + x42l2 + x43l3 + x44l4 + x45l5 + x46l6 + x47l7 = L4 
x51l1 + x52l2 + x53l3 + x54l4 + x55l5 + x56l6 + x57l7 = L5 
x61l1 + x62l2 + x63l3 + x64l4 + x65l5 + x66l6 + x67l7 = L6 
x71l1 + x72l2 + x73l3 + x74l4 + x75l5 + x76l6 + x77l7 = L7 
x81l1 + x82l2 + x83l3 + x84l4 + x85l5 + x86l6 + x87l7 = L8 

(8a) 
(8b) 
(8c) 
(8d) 
(8e) 
(8f) 
(8g) 
(8h) 

x91l1 + x92l2 + x93l3 + x94l4 + x95l5 + x96l6 + x97l7 = L9 (8i) 

L1 ≤ L 
L2 ≤ L 
L3 ≤ L 
L4 ≤ L 
L5 ≤ L 
L6 ≤ L 
L7 ≤ L 
L8 ≤ L 
L9 ≤ L 

(9a) 
(9b) 
(9c) 
(9d) 
(9e) 
(9f) 
(9g) 
(9h) 
(9i) 

x11 + x21 + x31 + x41 + x51 + x61 + x71 + x81 + x91 = 4 
x12 + x22 + x32 + x42 + x52 + x62 + x72 + x82 + x92 = 8 
x13 + x23 + x33 + x43 + x53 + x63 + x73 + x83 + x93 = 4 
x14 + x24 + x34 + x44 + x54 + x64 + x74 + x84 + x94 = 4 
x15 + x25 + x35 + x45 + x55 + x65 + x75 + x85 + x95 = 4 
x16 + x26 + x36 + x46 + x56 + x66 + x76 + x86 + x96 = 4 
x17 + x27 + x37 + x47 + x57 + x67 + x77 + x87 + x97 = 8 

(10a) 
(10b) 
(10c) 
(10d) 
(10e) 
(10f) 
(10g) 

5 ≤ L ≤ 7 (11) 

ijx  – binary integer: 0 or 1 (12) 

The relations (8) in combination with inequalities (9) define 
optimal cutting patterns for each particular blank. The optimal 
cutting patterns are defined not to exceed the length of the 
blanks and to satisfy the requested demand of elements 
expressed by (10). The objective function (7) seeks for 
solution that minimizes the waste of all blanks. The optimal 
length of blanks is to be defined within interval of 5 to 7 
meters (11). In this example the decision variables for optimal 
cutting patterns are binary integer variables (12).  

The solution the formulated mixed integer optimization task 
(7) – (12) determines the optimal length of blanks; total waste; 
waste for each blank; and used length of each blank, as shown 
in Table II.  

 
TABLE II 

OPTIMAL SOLUTION RESULTS 

Optimal length 
of blanks L, mm  

Total waste for 
order, mm  

Used length of 
each blank, mm 

Waste for each 
blank, mm 

6550 4110 

L1 = 6330 220 

L2 = 6330 220 

L3 = 6030 520 

L4 = 6030 520 

L5 = 5680 870 

L6 = 5680 870 

L7 = 5680 870 

L8 = 6530 20 

L9 = 6550 0 
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The optimal cutting patterns defined by the values of the 
binary integer variables for each blank are shown in Table III.  

 
TABLE III 

OPTIMAL CUTTING PATTERNS FOR EACH BLANK   

 Element1 Element2 Element3 Element4 Element5 Element6 Element7 
L1 0 1 1 0 1 0 1 
L2 0 1 1 0 1 0 1 
L3 0 1 1 1 0 0 1 
L4 0 1 1 1 0 0 1 
L5 1 1 0 0 0 1 1 
L6 1 1 0 0 0 1 1 
L7 1 1 0 0 0 1 1 
L8 0 1 0 1 1 1 0 
L9 1 0 0 1 1 0 1 

 

V. RESULT ANALYSIS AND DISCUSSION   
The defined optimal length of blanks to fulfill the order is 

6550 mm and the overall minimum waste is 4110 mm. The 
graphical illustration of optimal cutting patterns for each of the 
blanks is shown in Fig. 2.  

 

 
Fig. 2. Optimal cutting patterns for blanks  

(L = 6550 mm, waste = 4110 mm) 
 
It is compared with cutting patterns combinations defined 

by experienced practitioners for standard length of blanks 
equal to 6000 mm. The comparison shows that without 
optimization the trim loss is bigger as shown on Fig. 3. 

The proposed optimization approach determines the optimal 
length of blanks that is increased toward standard length with 
550 mm. This reduces number of needed blanks to fulfill the 
requested order and waste and costs as compared to the case of 
standard length using. Using of standard length of 6 m not 
only increases the trim loss but also increases the number of 
required blanks to execute the order. That is important for 
large joinery work projects in means of increasing of 
transportation costs.   

Due to NP-hard nature of considered problems, the 
computational time increases essentially with increasing the 
number of decision variables. The formulated mixed integer 
linear optimization task (7) – (12) is solved by LINGO solver 
using branch-and-bound method [18]. 

 

 
a) waste = 5160 mm 

 
b) waste = 5160 mm 

Fig. 3. Cutting patterns for standard blank length L = 6000 mm 
 
The solution time for the described example with 64 integer 

variables amounts to 1 hour, 23 minutes and 50 seconds on PC 
with 2.93 GHz Intel i3 CPU and 4 GB RAM. The task 
solution report is shown in Fig. 4.  

 

  
Fig. 4. Task solution report 

VI. CONCLUSION 
In the paper, joinery work manufacturing problem is 

investigated as one-dimensional cutting stock problem by 
means of combinatorial optimization. The advantage of the 
proposed approach is the possibility to determine 
simultaneously the optimal length of the blanks and optimal 
cutting patterns for each blank. In contrast to heuristic 
approaches to this type of problems the described approach 
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defines solution as a global optimum. The reduction of cutting 
trim loss is one of the main problems in joinery 
manufacturing. This problem turns to be important especially 
for large scale projects where the joinery work for a whole 
building or for several buildings has to be done. The described 
approach can contribute not only to reduce the trim loss via 
optimization of length of the blanks and cutting patterns, but 
also could decrease the overall production time and costs. 

Future investigations are to be done with different large 
scale problems to determine the computational difficulties. 
Implementation of the proposed approach in a software tool 
for joinery work design will help the practitioners to reduce 
costs and will contribute to their competitiveness.   
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