
 

 

  
Abstract—The paper presents an approach for a variant of 

constrained job shop scheduling where processing of some details is 
independent and other have fixed processing order (semi-constrained 
scheduling). The described approach aims to determine a schedule 
that minimizes the total makespan in such way that all given 
operations sequences are satisfied. For the goal, a parallel algorithm 
is proposed based on linear programming optimization tasks that are 
solved in parallel. The described approach for optimal job shop 
scheduling of semi-constrained details is numerically tested for real 
job shop scheduling problem. 
 

Keywords—Job shop scheduling, linear programming, minimal 
makespan, semi-constrained details processing.  

I. INTRODUCTION 
HE scheduling is a key factor for manufacturing 

productivity. Effective manufacture scheduling can 
improve on-time delivery, reduce inventory, cut lead times, 
and improve the utilization of bottleneck resources [1].  

One of the most studied combinatorial optimization 
problems is the job shop scheduling problem. Nevertheless, it 
still remains a very challenging problem to solve optimally. 
From a complexity point of view, the problem is NP-hard i.e. 
it can be solved in nondeterministic polynomial time [2], [3]. 

The simplest scheduling problem is the single machine 
sequencing problem [4]. Minimizing the total makespan is one 
of the basic objectives studied in the scheduling literature. The 
shortest processing time dispatching rule will give an optimal 
schedule in the single machine case if the tool life is 
considered infinitely long [5]. The scheduling with sequence-
dependent setups is recognized as being difficult and most 
existing results in the literature focus on either a single 
machine or several identical machines [6]-[8]. The real-life 
scheduling problems usually have to consider multiple no 
identical machines.  
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Most of the processing machines needed to process the jobs 
are available in the manufacturer's own factory and are of fixed 
(finite) number. Sometimes, certain details must be ordered to 
a third party companies to complete very specific processing 
as molding for example. In cases like that, the processing 
schedules are to be agreed for delivery times from the third-
party processing. That means generating a schedule to process 
all jobs, so as to minimize the total cost, including the 
satisfaction of the due dates of the jobs [9]. Different 
manufacturing environments induce different scheduling 
constraints, some of which may be very specific to the problem 
under consideration [10].  

The classical job shop scheduling problem is one of the 
most typical and complicated problems formulated as follows: 
1) a job shop consists of a set of different machines that 
perform operations of jobs; 2) each job is composed of a set of 
operations and the operation order on machines is prescribed; 
3) each operation is characterized by the required machine and 
the processing time. In the last two decades, numerous 
techniques was developed on deterministic classical job shop 
scheduling, such as analytical techniques, rule-based approach 
and meta-heuristic algorithms and algorithms using dynamic 
programming [11]-[15]. 

Approximately up to 2004 the computers have had 
gradually increasing of CPU performance by increasing of 
operating frequency, and the need of multi core systems was 
not so obvious. NVIDIA has invented the graphics processing 
unit (GPU) that became a pervasive parallel processor to date. 
It has evolved into a processor with unprecedented floating-
point performance and programmability and today’s GPUs 
greatly outpace CPUs in performance, making them the ideal 
processor to accelerate a variety of data parallel applications. 
GPUs have hundreds of processing cores and with CUDA 
programming model [16] software and hardware architecture 
is available using of a variety of high level programming 
languages. This represented a new way to use the GPU as a 
general purpose parallel computer processor. This opens up 
new horizons in development and application of new 
approaches based on parallel algorithms [17].  

The proposed scheduling approach concerns a problem of 
scheduling for multiple details with fixed processing time and 
predetermined order of processing operations over different 
machines. An essential feature of the investigated job shop 
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scheduling problem is that: 1) the processing of some details 
depends on processing of other details i.e. a group of details 
have predetermined order of processing and 2) the processing 
of the other parts is independent of each other. This variant of 
job shop scheduling can be named as semi-constrained job 
shop scheduling problem. It is approached in the paper by 
means of an algorithm based on parallel solving of a number 
of integer linear programming tasks. The main goal is to 
determine a schedule that minimizes the total makespan in 
such way that all details processing conforms to the given 
restrictions. The proposed parallel algorithm for optimal job 
shop scheduling of semi-constrained details processing on 
multiple machines is numerically tested for a real life example.  

II. PROBLEM DESCRIPTION  
There is a group of details that need to be processed on 

multiple machines. Some of these details are connected with 
each other through given order of processing while other can 
be processed in any order. All details have predetermined 
sequence of operations on different machines. The details 
processing times on machines are deterministic and are known 
in advance. The problem is to determine the minimum 
makespan for all details processing according to requirements.   

For clarity of presentation the investigated job shop problem 
will be explained by a real life example for a set of six details 
(jobs) with given sequences of operations that should be 
processed on four different machines with known processing 
time on each machine. All available data are summarized in 
Table I where operations’ designation Oij means processing of 
detail i on machine j and processing times are given in hours.  

 
TABLE I 

INPUT DATA FOR DETAILS PROCESSING  
Details 
(Jobs)  

Operations  Processing 
time on M1 

Processing 
time on M2 

Processing 
time on M3 

Processing 
time on M4  

D1 
O11 8    
O12  6   
O14    6 

D2 
O21 8    
O22  9   
O24    6 

D3 
O31 8    
O33   8  
O32  8   

D4 
O41 4    
O42  2   
O43   2  

D5 
O51 4    
O52  9   
O53   5  

D6 
O61 6    
O63   4  

 
The sequence of operations for each detail are given as  

D1 {O11, O12, O14}, D2 {O21, O22, O24}, D3 {O31, O33, O32},  
D4 {O41, O42, O43}, D5 {O11, O12, O13} and D6 {O61, O63}. Due 
their post-processing specifics the details D4, D5 and D6 should 

be processed in a sequential order. All jobs cannot overlap on 
the machines and one job cannot be processed simultaneously 
by two or more machines. Each operation needs to be 
processed during an uninterrupted period of a given length on 
a given machine. The goal of the investigated scheduling 
problem is to determine a schedule that minimizes the total 
makespan. The described problem can be represented as 
machine-oriented Gantt chart visualizing the sequence of 
details processing as shown in Fig. 1 

 

Fig. 1. Gantt chart for a schedule  

III. MATHEMATICAL MODEL FORMULATION  
Most variants of job shop scheduling problem are NP-hard 

in the strong sense and thus defy ordinary solution methods. 
That is why new techniques are required to overcome 
difficulties and to be applied to particular manufacturing job 
shop scheduling problems. The generalized goal of most of 
optimal scheduling problems is to minimize the overall costs. 
Although many costs could be considered for optimization, the 
minimizing of details processing time duration is one of most 
frequently used. It provides the effective machines utilization 
and serves the optimization of details delivering and storage. 
The overall details processing time duration (makespan) can 
be defined as difference between end processing moment of 
the last detail and start processing moment of the first detail 
and if the processing starts at moment zero moment then the 
objective can be minimization of the end processing moment 
of the last detail. Using those considerations, an optimization 
model can be formulated following the notations:  
1) number of details indexed by i ∈ {1,2,…,N}   
2) number of machines for detail processing, indexed by  

j ∈ {1,2,…,M}   
3) job processing times Ti,j of each detail i on machine j are 

known constants.  
4) xi,j, is the moment of time for starting of processing of 

detail i on machine j. 
The scheduling problem is formalized via linear 

programming formulation that minimizes the makespan as: 

∑
=

→
N

i
endix

1
,min  (1) 

subject to 

jijiji Txx ,,1, ≥−+ , ∀i=1,2,…,N, (2) 

jijiji Txx ,,,1 ≥−+ ,  ∀ j=1,2,…,M (3) 

0, ≥jix    (4) 
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The objective function (1) minimizes the processing end 
time of all details. The relation (2) expresses the restriction for 
operation sequence for each detail, while relation (3) illustrates 
the restriction for the details processing order (if any). For 
dependant details processing there exist a certain order of 
processing, but in case of independent details the processing 
order is not fixed. This way formulated model can be used to 
determine the optimal makespan for a given sequence of 
details processing. To find the optimal makespan among all of 
the possible sequences of independent details processing a 
parallel algorithm can be applied.  

IV. PARALLEL ALGORITHM FOR MINIMAL MAKESPAN 
DETERMINATION 

To find the optimal scheduling that is minimal in the sense 
of shortest overall makespan, a parallel algorithm for optimal 
job shop scheduling of semi-constrained details processing on 
multiple machines is developed as shown in Fig. 2.  

 

 
Fig. 1. Parallel algorithm for job shop scheduling  

 
On the first step of the algorithm the independent jobs are to 

be defined and designated using name of the corresponding 
detail. If exist dependant jobs (as for details D4, D5 and D6) 
they are considered as one independent job named after first 
detail of processing sequence (D4). Then the overall number 
of independent details is determined. On the second step all 
possible orderings (permutations) for processing of 
independent details are defined. On the next step each of the 
details processing ordering is formalized by proper 
optimization task following the model (1) – (4). It is important 
to stress here that all formulated in this way optimization tasks 

are independent of each other. The solution of any of them 
does not depend on data or solution of other tasks. This makes 
them perfect candidates for using of parallel threads for their 
solving on step 4. Then, tasks solution results (makespan 
values) are compared and ranked. On the last step the schedule 
corresponding to the task with best solution with minimal 
makespan value is chosen as optimal job shop schedule. 

V. NUMERICAL EXAMPLE 
In deterministic job shop scheduling problem, is assumed 

that all processing times are fixed and known in advance, so 
using the input data from Table I, the optimization model (1) – 
(4) can be expressed as: 

 
( )endendendendendend xxxxxx ,6,5,4,3,2,1min +++++  (5) 

81,12,1 ≥− xx   (6) 

62,14,1 ≥− xx  (7) 

64,1,1 ≥− xx end  (8) 

81,22,2 ≥− xx   (9) 

92,24,2 ≥− xx   (10) 

64,2,2 ≥− xx end   (11) 

81,33,3 ≥− xx  (12) 

83,32,3 ≥− xx    (13) 

82,3,3 ≥− xx end   (14) 

41,42,4 ≥− xx   (15) 

22,43,4 ≥− xx   (16) 

23,4,4 ≥− xx end   (17) 

41,52,5 ≥− xx   (18) 

92,53,5 ≥− xx  (19) 

43,55,5 ≥− xx  (20) 

55,5,5 ≥− xx end   (21) 

61,63,6 ≥− xx   (22) 

43,6,6 ≥− xx end   (23) 

• to restrictions for the details priority processing:  

81,11,2 ≥− xx  (24) 

81,21,3 ≥− xx   (25) 

81,31,4 ≥− xx   (26) 

41,41,5 ≥− xx   (27) 

41,51,6 ≥− xx   (28) 

62,12,2 ≥− xx   (29) 

92,22,3 ≥− xx  (30) 

81,32,4 ≥− xx  (31) 

22,42,5 ≥− xx   (32) 

83,33,4 ≥− xx   (33) 
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23,43,5 ≥− xx   (34) 

53,53,6 ≥− xx   (35) 

64,14,2 ≥− xx   (36) 

 0, ≥jix  (37) 

The formulated task (5) – (37) takes into account the details 
processing sequence D1 → D2 → D3 → D4 → D5 → D6. To 
define the minimum makespan for other processing sequence 
this task should be reformulated. The group of restrictions for 
details priority processing (24) to (36) has to be changed to 
correspond to other possible details processing sequence. 
There are 3 details (D1, D2 and D3) that can be processed in 
any order. The group of dependant details D4, D5 and D6 can 
be considered as one independent detail and the number of all 
possible processing sequences can be calculated as number of 
permutations of 4, i.e. number of different processing 
sequences that have to be evaluated is equal to 4! = 24.  

For example, if details processing sequence is D1 → D3 → 
D2 → D4 → D5 → D6 the restrictions (24) – (26) should be 
reformulated as:  

 
81,11,3 ≥− xx  (24) 

81,31,2 ≥− xx   (25) 

81,21,4 ≥− xx   (26) 

 
The objective function (5) and the rest of restrictions remain 

the same.  
If details processing sequence is D2 → D1 → D3 → D4 → 

D5 → D6 the restrictions (24) – (26) have to be changed as: 
 

81,21,1 ≥− xx  (24) 

81,11,3 ≥− xx   (25) 

81,31,4 ≥− xx   (26) 

 
and again the objective function and the rest of restrictions 
remain the same.  

If the group of details D4, D5 and D6 is to be processed in 
the first place i.e. details processing order is D4 → D5 → D6 → 
D1 → D2 → D3 the restrictions (24) – (36) are transformed to: 

 
41,41,5 ≥− xx  (24) 

41,51,6 ≥− xx  (25) 

61,61,1 ≥− xx   (26) 

81,11,2 ≥− xx   (27) 

81,21,3 ≥− xx   (28) 

22,42,5 ≥− xx   (29) 

92,52,1 ≥− xx  (30) 

61222 ≥− xx  (31) 

92,22,3 ≥− xx   (32) 
23,43,5 ≥− xx   (33) 
53,53,6 ≥− xx   (34) 
43,63,3 ≥− xx   (35) 
64,14,2 ≥− xx   (36) 

with the same objective function and the remaining 
restrictions.  

In similar way, all possible combinations of detail 
processing sequences can be reflected in 24 different 
modifications of basic optimization task (5) – (37). The 
solving of all of the tasks can be done in parallel because all of 
the tasks are entirely independent of each other. The result of 
the solutions is 24 job shop schedules corresponding to 
different details processing sequences. 

VI. RESULTS ANALYSIS AND DISCUSSION  
The solutions of all optimization tasks corresponding to all 

possible combinations for details processing sequences along 
with their total makespan are shown in Table II.  

The makespan values in tasks solutions vary within interval 
of 65 to 52 hours for different details processing sequences. 
Among them the optimal one with minimal makespan equal to 
52 hours is for details processing sequence: D2 → D1 → D3 
→ D4 → D5 →D6.  

The corresponding schedules for each processing sequence 
are illustrated in Fig. 3. For the described example, 11 
different makespans have been distinguished that could not be 
determined by intuitive considerations. Increasing the number 
of independent details will increase the number of processing 
sequences and therefore the number of tasks that must be 
solved but because of parallel algorithm for solution of each 
task, this will not affect the computational complexity. Despite 
the fact that integer problems are difficult to solve (in general 
they are NP-hard), the formulated optimization problems and 
numerical testing show quite acceptable solution times of few 
seconds by means of LINGO solver [18].  

All real-life job shop scheduling problems have their own 
specifics. When analyzing the resulting schedules it can be 
seen, the relationship between the processing details sequence 
and machines occupation have a significant impact on overall 
manufacturing process performance. For the described 
example, it turned out that Machine 1 is the busiest machine 
among the others. One possible approach to shorten the overall 
makespan is to consider more than one machine of type 1 and 
to estimate the influence of machine’s number on the total 
makespan.  

The proposed approach based on parallel solution of a set 
optimization tasks can be used for other similar problems 
concerning optimal job shop scheduling.  
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Fig. 3. Schedules for different details processing sequences 
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TABLE II 
SOLUTIONS RESULTS  

Sequence of the details processing Total makespan, hours  
D1, D2, D3, D4, D5, D6 60 
D1, D3, D2, D4, D5, D6 61 
D2, D1, D3, D4, D5, D6 52 
D2, D3, D1, D4, D5, D6 58 
D3, D1, D2, D4, D5, D6 59 
D3, D2, D1, D4, D5, D6 59 
D4, D5, D6, D1, D2, D3 54 
D4, D5, D6, D1, D3, D2 61 
D4, D5, D6, D2, D1, D3 54 
D4, D5, D6, D2, D3, D1 58 
D4, D5, D6, D3, D1, D2 60 
D4, D5, D6, D3, D2, D1 63 
D1, D2, D4, D5, D6, D3 61 
D2, D1, D4, D5, D6, D3 59 
D3, D2, D4, D5, D6, D1 55 
D2, D3, D4, D5, D6, D1 53 
D1, D3, D4, D5, D6, D2 58 
D3, D1, D4, D5, D6, D2 56 
D3, D4, D5, D6, D1, D2 56 
D3, D4, D5, D6, D2, D1 56 
D1, D4, D5, D6, D3, D2 54 
D1, D4, D5, D6, D2, D3 65 
D2, D4, D5, D6, D1, D3 54 
D2, D4, D5, D6, D3, D1 65 

Minimal makespan: 52 hours 

VII. CONCLUSION  
In this paper, a deterministic job shop scheduling approach 

for details processing on multiple machines based on integer 
linear programming model is described. The goal of described 
job shop scheduling is to determine the minimum makespan 
for a number of semi-dependant details (some with 
independent processing and other with dependant of each other 
processing) with different operations on different machines. 
To find the minimum of total makespan, a number of identical 
optimization tasks corresponding to all permutations of 
independent details processing sequences are formulated. The 
main contribution of the paper is using of the developed model 
in an algorithm based on solving of all formulated tasks in 
parallel. The execution of the algorithm provides a set of job 
shop optimal schedules for all possible details processing 
sequences. Then the best schedule and corresponding 
processing sequence in sense of minimal makespan are 
determined.  

As extensions and future investigations, a possible direction 
is to explore how increasing number of identical machines will 
influence the algorithmic and computational difficulties.  

For large scale job shop problems, where the total makespan 
could be essentially bigger, this approach can contribute not 
only to reduce the makespan via schedules optimization, but 
also to decrease the overall production time and costs. 
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