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Abstract. Plates are structures which have wide applications among
engineering constructions. The knowledge of the dynamical behavior of
plates is important for their design and maintenance. The dynamical
behavior of the plate can change significantly due to bifurcation points
which arise due to the nonlinear terms at the equation of motion in the
presence of large displacements.

The current work presents numerical methods for investigating the dy-
namical behavior of plates with complex geometry and studies the scal-
ability and efficiency of the methods. The potential of the methods is
demonstrated on a plate with complex geometry. Its bifurcation dia-
grams are computed, stability of the solution is determined, secondary
branches are obtained and the corresponding shapes of vibration are
shown.

1 Introduction

Plates are thin structures and due to strong external loads their displacements
can become large. Linear theories are not appropriate for modeling large dis-
placements thus one should include geometrical nonlinear terms at the equation
of motion for obtaining more accurate results. Nonlinearities can change drasti-
cally the behavior of the system, thus additional tools for analyzing such systems
need to be used. The aim of the work is to present efficient numerical methods,
suitable for parallel implementation, for analyzing nonlinear dynamical systems
which arise from motion of plates with complex geometry.

The equation of motion of the plate is derived by the finite element method
assuming classical plate theory and including geometrically nonlinear terms. Tri-
angular finite elements are used, thus one can model plates of complex shapes
(Fig. 1). The shooting method is used to compute the periodic responses of the
plate due to harmonic excitations. Prediction for the next point from the bifur-
cation diagram is defined by the continuation method. Stability is determined
by the Floquet’s multipliers. Bifurcation points are found, the corresponding
secondary branches and the associated shapes of vibration are presented. The
numerical methods are run on parallel processes and their scalability is studied.



2 Equation of motion of plates

The nonlinear equation of motion of plate is derived in Cartesian coordinate
system assuming classical plate theory, also known as Kirchoff’s hypotheses.
Only transverse displacements are considered on the middle plane. Kirchoff’s
hypotheses states that stresses in the direction normal to the plate middle surface
are negligible and strains vary linearly within the plate thickness.

Assuming Kirchoff’s hypotheses, the in-plane displacements u(x, y, z, t) and
v(x, y, z, t) and the out-of-plane displacement w(x, y, z, t) are expressed by the
out-of-plane displacement on the middle plane w0(x, y, t):

u(x, y, z, t) = −z ∂w0(x, y, t)

∂x
,

v(x, y, z, t) = −z ∂w0(x, y, t)

∂y
,

w(x, y, z, t) = w0(x, y, t),

(1)

The middle plane is defined for z = 0. Using the nonlinear strain-displacement
relations from Green’s strain tensor and assuming that εz, γxz and γyz are neg-
ligible, i.e. εz = γxz = γyz = 0, the following expressions are obtained:
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The stresses are related to the strains by the constitutive relations written
in reduced form. For isotropic materials this relation is given by: σx
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 , (3)

where E is Young’s modulus and ν is Poisson’s ratio. The equation of motion is
derived by the Hamilton principle:∫ t2

t1

(δT − δΠ)dt = 0, (4)

where δT and δΠ are variations of the kinetic and potential energies:

Π =

∫
V

(εxσx + εyσy + γxyτxy)dV (5)



T = ρ

∫
V

(uü+ vv̈ + wẅ)dV, (6)

where by double dot is denoted the second derivative with respect to time, V is
the volume of the plate and ρ is the density. The equation of motion is obtained
in the following form:
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where h is the thickness and Nx, Ny and Nxy are the stress resultants given by:
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Details about the derivation of the equation of motion can be found, for
example in [1].
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Fig. 1. Plate with complex geometry and mesh of finite elements.



3 Finite element method and computation of periodic
responses

The partial differential equation (7) is discretized by the finite element method.
A system of nonlinear ordinary differential equations of the following type is
obtained:

Mq̈(t) + Cq̇(t) + KLq(t) + KNL(q(t))q(t) = F(t) (9)

Due to the complexity of the geometry of the plate and the necessity of
using fine mesh of elements for convergence, the resulting system (9) can become
large. Efficient parallel algorithms for solving large systems of sparse and dense
matrices are used in the analysis.

Dynamical analysis is performed by investigating the periodic responses of
the plate due to harmonic external forces. Of interest is to determine how the
response changes with change of the excitation frequency. Periodic responses are
computed by the shooting method. It computes iteratively the initial conditions
which lead to periodic response. Shooting method consists of time integration
of 2N independent systems, where N is the total number of degrees of freedom,
and it is very suitable for parallel implementation [2]. Prediction for the next
point from the bifurcation diagram is defined by the continuation method. It
is shown that the forced periodic responses of plates with complex geometries
present motion which combines several modes of vibration (Fig. 2)

Fig. 2. First and second linear modes of the plate from Fig. 1.
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