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1 Introduction 

Classical mechanics, introduced by I. Newton, improved by L. Euler and 
furthered by J.L. Lagrange and P.S. Laplace has been a serving as a powerful 
paradigm for the coherent description of phenomena. While the paradigm has 
been able to answer many questions about the world around us, it has failed 
to provide explanations of many experiments, performed in the last 100 years. 
Therefore, the field of quantum mechanics was developed in order to provide 
a sufficient way to explain phenomena.  As with the classical mechanics, there 
are many formalisms in quantum as well. Currently, the standard quantum 
mechanics approach is the mathematical formulation provided by E. 
Schroedinger[1], although alternative formulations exists – like E. Wigner [2], 
R. Feynman [3], L.V. Keldysh [4], K. Husimi [5], D. Bohm [6], [7]. 
 
At the outset, one may say those models are radically different, but there are 
in fact mathematically and experimentally equivalent. Looked from the 
mathematical perspective – there is a transform between any two 
formulations, and experimentally, one could prove the predictions made by 
these theories are all exactly the same. Furthermore, due to the same set of 
predictions provided, one may consider them as complementary.  

 
In 2015, a new formulation of quantum mechanics was proposed by one of 
the authors of this paper [8]. This formalism describes quantum objects in 
terms of classical particles by suggesting a new interpretation of the 
mathematical Wigner Monte Carlo method extended to infinite domains and 
non-discretized phase spaces [9] which is able to simulate the time-dependent 
single- and many-body Wigner equation [10], [11]. This formalism uses the 



method uses signed particles provided with a position and momentum, while 
preserving the Heisenberg principle of uncertainty. The dynamics of the sys-
tem is expressed in terms of creation, evolution and annihilation of signed par-
ticles only. 
  
The reader should note that when we restrict this formulation to final domain 
and to semi-discrete phase spaces, we obtain the well-known Wigner Monte 
Carlo method [13]. This formulation deals with single- as well as many-body 
cases and approaches problems in a time-dependent fashion from first princi-
ples of Physics. 

 
In this paper we introduce a computationally convenient parallelization 
scheme based on the ensemble of particles which do not need any communi-
cation. In the next section we introduce the signed particle formulation of 
quantum mechanics while in the third section we provide the parallelization 
method we have employed for the task. 

2 The signed particle formulation of Quantum Mechanics 

In this section we introduce the three postulates of the signed particle 
formulation which we parallelize in this work. 
 
Postulate I. Physical systems can be described by means of (virtual) Newtonian 
particles, i.e. provided with a position x and a momentum p simultaneously, 
which carry a sign which can be positive or negative. 
 

Postulate II. A signed particle, evolving in a potential V = V (x), behaves as a 

fieldless classical point-particle which, during the time interval dt, creates a 

new pair of signed particles with a probability ϒ(x(t)) dt where  

 

and 𝑉
+
𝑤

(x;p) is the positive part of the quantity 

 

 



known as the Wigner kernel (in a d-dimensional space) [2]. If, at the moment 

of creation, the parent particle has sign s, position x and momentum p, the 

new particles are both located in x, have signs +s and −s, and momenta p+p′ 

and p−p′ respectively, with p′ chosen randomly according to the (normalized) 

probability  
𝑉

+
𝑤

(𝑥;𝑝)

ϒ(𝑥)
. 

 
Postulate III. Two particles with opposite sign and same phase-space 
coordinates (x, p) annihilate. 

 
Firstly, we assign initial conditions to the system by means of an ensemble of 
signed particles and compute the gamma function. Then particles are evolved 
using formula (2) iteratively. For every particle in the ensemble, we compute 
free flight, create new signed particles pairs, equivalent to the recursive 
application of the operator ˆS defined in [8]. Finally we have an annihilation 
step, which is important in situations where the number of signed particles 
may increase indefinitely (although this is not always the case, e.g. the trivial 
situation in which the function gamma is identically zero). 

3 Parallelization Scheme 

Recently a parallelization scheme for the Wigner Monte Carlo method has 
been proposed in [12], which is based on the decomposition of the spatial do-
main. In this section we propose a computationally convenient alternative 
achieved through the following.  
 
It is well known that virtual signed particles represent different configurations 
of the system in the phase space [13]. As such they are independent mathe-
matical objects which are evolved by iteratively applying postulate II. There-
fore this suggests that the original ensemble can be divided in subsets among 
CPUs and evolved without any communication. 
 
Of course, one should remember that all environmental variables describing 
the potential involved in the simulation have to be copied on every CPU. In 
order to show the applicability and efficiency of the proposed algorithm we 
show in fig. 1 the parallel speedup and efficiency curve (the system consists of 
wave packet impinging on energetic barrier) [14]. 
 



Fig. 1 
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