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This research deals with the restoration of images corrupted by a non-invertible
or ill-conditioned linear transform and Poisson noise. Poisson data typically oc-
cur in imaging processes where the images are obtained by counting particles,
e.g., photons, that hit the image support. The Poisson distribution exhibits a
mean/variance relationship. This mean/variance dependence can be reduced by
using variance-stabilizing transformations (VST), one of which is the Anscombe
transform [1] defined as
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It transforms Poisson noise to approximately Gaussian noise with zero-mean and
unit variance (if the variance of the Poisson noise is large enough). The Anscombe
transform has been employed in order to solve inverse problems where one wants
to recover an original signal u ∈ [0,+∞)m from observations

f = P(Hu),

where P denotes an independent Poisson noise corruption process and H ∈
[0,+∞)n×m is a linear degradation operator, e.g. a blur. Note that we consider
images of size M ×N columnwise reshaped as vectors of length m = MN .

In [2], we solved the Anscombe Total Variation (TV) [3] constraint optimiza-
tion problem

minimize
u∈[0,+∞)m

‖∇u‖2,1 subject to ‖T (Hu)− T (f)‖22 ≤ τA, (1)

where ∇ ∈ R2m×m is the discrete gradient operator (forward differences and
Neumann (mirror) boundary conditions were used), and ‖ · ‖2,1 denotes the
`2,1 norm. For the purpose, we applied a primal-dual algorithm together with a
projection onto the epigraph of a convex function related to the Anscombe trans-
form. We showed that this epigraphical projection can be efficiently computed
by Newton’s methods with an appropriate initialization.

Based on the statistical properties of the Anscombe transform and the law
of large numbers, a consistent choice for the above bound is τA = n, provided
the size n of the original image ū is large enough. We denote

CA :=
{
u ∈ C : ‖T (Hu)− T (f)‖22 ≤ τA

}
.
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The choice of the constraint parameter τA is based only on the fidelity term
‖T (Hu)−T (f)‖22. It places the true image ū with high probability very close to
the boundary of the constraint set CA, thus guaranteeing the set is non-empty
and a minimizer u exists. Moreover, since the TV functional is a semi-norm
and every semi-norm is positively-homogeneous, for τA = n our optimization
problem admits a solution uA ∈ ∂CA, which is unique whenever CA contains no
constant images.

Being an admissible candidate for the solution of the optimization problem
is not enough for the initial image ū to be always “close” to that solution! If the
constraint set is too large, then the two images might still differ a lot. This is
indeed the case for the numerical examples, considered in [2]. The constraint set
CA is too large and we “oversmooth” the image a lot. Hence, we need to restrict
the former.

Even though decreasing τA may improve the output of (1), it doesn’t seem
like a good strategy. We need to adapt the value of τA, which is computationally
expensive and we lose the nice properties of ū being close to the boundary of
CA, thus the existence and the uniqueness of the minimizer as well as the possi-
bility of ū to be that minimizer. Therefore, here we follow a different approach
for restricting CA that is based on subdividing the image domain into smaller
regions and using different constraints for them. In such a setup, equation (1) is
reformulated into

minimize
u∈[0,+∞)m

‖∇u‖2,1 subject to ‖T (Hu)− T (f)‖Ai
≤ τi, i = 1, . . . ,K

where {Ai}Ki=1 is a tessellation of the image domain (Ai∩Aj = ∅), and ‖·‖Ai
is a

short notation for the squared 2-norm, restricted to the region Ai. We consider
different options for {Ai}Ki=1, namely block subdivision, intensity tessellation,
and 2-step combined tessellation.
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