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Generalized network design problems

Many network design problems can be generalized in a natural
way by considering a related problem on a clustered graph, where
the original problem’s feasibility constraints are expressed in
terms of the clusters, i.e. node sets instead of individual nodes.
Given an undirected weighted graph G = (V ,E) with node set V
and edge set E . The nodes are partitioned into a given number of
node sets called clusters and edges are defined between any two
nodes belonging to different clusters and to each edge e ∈ E we
associate a nonnegative cost ce.
The goal of these problems is to find a subgraph F = (S,T ) of G
where the subset of nodes S = {v1, ..., vm} ⊂ V is containing
exactly one node from each cluster with different requirements to
be fulfilled by the subset of edges T ⊂ E depending on the actual
optimization problem.
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Generalized network design problems

In this way, it is introduced the class of generalized network design
problems (selective combinatorial optimization problems):

I the generalized minimum spanning tree problem
I the generalized traveling salesman problem
I the railway traveling salesman problem
I the generalized vehicle routing problem
I the generalized fixed-charge network design problem
I the generalized minimum edge-biconnected network problem
I the selective graph coloring problem
I ...

Applications of the generalized combinatorial optimization
problems: location problems, regional connection of local area
networks (LAN), irrigation, telecommunications, designing
networks, irrigation, energy distribution, logistics and distribution
problems, scheduling, railway optimization, etc.
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Petrică C. Pop (Technical University of Cluj-Napoca) GVRP 6th March 2013 4 / 47



Generalized network design problems

In this way, it is introduced the class of generalized network design
problems (selective combinatorial optimization problems):

I the generalized minimum spanning tree problem
I the generalized traveling salesman problem
I the railway traveling salesman problem
I the generalized vehicle routing problem
I the generalized fixed-charge network design problem
I the generalized minimum edge-biconnected network problem
I the selective graph coloring problem
I ...

Applications of the generalized combinatorial optimization
problems: location problems, regional connection of local area
networks (LAN), irrigation, telecommunications, designing
networks, irrigation, energy distribution, logistics and distribution
problems, scheduling, railway optimization, etc.
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The Generalized Vehicle Routing Problem

The generalized vehicle routing problem (GVRP) was introduced
by Ghiani and Improta (2000).
The goal of the problem is to design the optimal delivery or
collection routes, subject to capacity restrictions, from a given
depot to a number of predefined, mutually exclusive and
exhaustive node-sets (clusters) with the condition that exactly one
node is visited from each cluster.
Applications: in the field of distribution and logistics.
An illustrative scheme of the GVRP and a feasible tour is shown in
the next figure.
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The Generalized Vehicle Routing Problem (GVRP)
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Definition and Complexity Aspects of the GVRP
Let G = (V ,A) be a directed graph with V = {0,1,2, ....,n} as the
set of vertices and the set of arcs A with a cost cij ≥ 0 associated
with each arc (i , j) ∈ A. The set of vertices is partitioned into k + 1
mutually exclusive nonempty clusters V0,V1, ...,Vk .
Each customer has a certain amount of demand and the total
demand of each cluster can be satisfied via any of its nodes.
There exists m identical vehicles, each with a capacity Q.
The GVRP consists in finding the minimum total cost tours
starting and ending at the depot, such that each cluster should be
visited exactly once, the entering and leaving nodes of each
cluster is the same and the sum of all the demands of any tour
(route) does not exceed the capacity of the vehicle Q.
The GVRP reduces to the classical VRP when all the clusters are
singletons and to the GTSP when m = 1 and Q =∞. The GVRP
is NP-hard because it includes the GTSP as a special case when
m = 1 and Q =∞.
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Several real-world situations can be modeled as a GVRP:

the post-box collection problem described in Laporte et al. (1989)
becomes an asymmetric GVRP if more than one vehicle is
required;
the distribution of goods by sea to a number of customers situated
in an archipelago as in Philippines, New Zeeland, Indonesia, Italy,
Greece and Croatia;
the design of tandem configurations for automated guided
vehicles described by Baldacci et al. (2010);
several applications of the classical VRP and of the GTSP may be
extended naturally to the GVRP.
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An efficient transformation of the GVRP into the VRP
Some efficient transformations of the GCOPs into classical COPs have
been developed:

in the case of the GTSP, the first transformation into the TSP was
introduced by Lien et al. (1993). Later, Dimitrijevic and Saric
(1997) developed another transformation that decreased the size
of the corresponding TSP. Behzad and Modarres (2002) provided
an efficient transformation.
in the case of the RTSP which is a practical extension of the
GTSP considering a railway network and train schedules, Hu and
Raidl (2008) provided two transformation schemes to reformulate
the RTSP as either a classical asymmetric and symmetric TSP.
in the case of the GVRP, Ghiani and Improta (2000) showed that
the problem can be transformed into a capacitated arc routing
problem (CARP) and Baldacci et al. (2010) proved that the
reverse transformation is valid.
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An efficient transformation of the GVRP into the VRP
Let denote by v r

i the i-th node of the cluster Vr . Then we define the
VRP on a directed graph G′ associated to G as follows:

The set of nodes of G and G′ are identical.
All nodes of each cluster of are connected by arcs into a cycle in
G′. We denote by v r

i(s) the node that succeeds v r
i in the cycle.

The costs of the arcs of the transformed graph G′ are defined as:

c′(v r
i , v

r
i(s)) = 0

c′(v r
i , v

t
j ) = c(v r

i(s), v
t
j ) + M, r 6= t

where M must be a sufficiently large number, for example∑
(i,j)∈A c(i , j).
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An efficient transformation of the GVRP into the VRP

We can define now the one-to-one correspondence between tours in
G′ and generalized tours in G:

Consider a tour in G′ and connect the first nodes of its clusters
paths together in the order of their corresponding clusters, then
the result is a generalized tour in G.
Consider a generalized tour in G that includes the following nodes
· · · → v r

i → v t
j → · · ·, r 6= t . Replacing the node v r

i with the Vr -th
cluster path of starting with v r

i and then connecting the last node
of this path with to the next cluster path starting with v t

j , we obtain
a tour in G′.
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An efficient transformation of the GVRP into the VRP
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Integer programming formulations of the GVRP

The first IP formulation for the GVRP was introduced by Kara and
Bektas (2003)
Four IP formulations of the GVRP: two based on multicommodity
flow and two based on exponential sets of inequalities were
described by Bektas et al. (2011)
Two polynomial size IP formulations of the GVRP: a node based
model and a flow based model have been introduced by Pop et al.
(2012)
These formulations have been extended also to the case in which
the vertices of any cluster of each tour are contiguous, defined as
the clustered generalized vehicle routing problem.
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Petrică C. Pop (Technical University of Cluj-Napoca) GVRP 6th March 2013 13 / 47



Integer programming formulations of the GVRP

The first IP formulation for the GVRP was introduced by Kara and
Bektas (2003)
Four IP formulations of the GVRP: two based on multicommodity
flow and two based on exponential sets of inequalities were
described by Bektas et al. (2011)
Two polynomial size IP formulations of the GVRP: a node based
model and a flow based model have been introduced by Pop et al.
(2012)
These formulations have been extended also to the case in which
the vertices of any cluster of each tour are contiguous, defined as
the clustered generalized vehicle routing problem.
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Integer programming formulations of the GVRP
An integer programming formulation

minimize
∑
v∈M

∑
(i,j)∈A

cijxv
ij

subject to
∑
i∈Vl

zi = 1, for l = 1, ..., k

∑
v∈M

∑
j∈V

xv
ij = zi , ∀i ∈ {1, ...,n}∑

i∈V\{0}

di
∑
j∈V

xv
ij ≤ Q, ∀v ∈ M

∑
i∈V\{0}

xv
0j = 1, ∀v ∈ M

∑
i∈V

xv
ik −

∑
j∈V

xv
kj = 0, ∀k ∈ V \ {0} and ∀v ∈ M

xv
ij , zi ∈ {0,1}, ∀i ∈ V ∀(i , j) ∈ A, v ∈ M
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Solving the Generalized Vehicle Routing Problem

an efficient transformation of the GVRP into a Capacitated Arc
Routing Problem (CARP), Ghiani and Improta (2000);
an ACS based algorithm described by Pop et al. (2008);
an efficient transformation of the generalized vehicle routing
problem into the vehicle routing problem, Pop (2011);
an adaptive large neighborhood search proposed by Bektas et al.
(2011);
a memetic algorithm Pop et al. (2012);
an incremental tabu search heuristic described by Moccia et al.
(2012);
an improved hybrid algorithm proposed by Pop et al.(2013).
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A Variable Neighborhood Search Approach for Solving
the GVRP

VNS is quite a recent metaheuristic used for solving optimization
problems based on a systematic change of the neighborhoods
structures within the search in order to avoid local optima and to
head for a global optimum.
VNS is based on two simple facts:

I Fact 1: A local minimum w.r.t. one neighborhood structure is not
necessary so with another;

I Fact 2: A global minimum is a local minimum w.r.t. all possible
neighborhood structures.

For more details on the VNS we refer to Hansen and Mladenovic
[7, 8].
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neighborhood structures.

For more details on the VNS we refer to Hansen and Mladenovic
[7, 8].
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A Variable Neighborhood Search Approach for Solving
the GVRP

Variable Neighborhood Search Framework for GVRP
Initialization. Select a set of neighborhoods structures Nl , for
l = 1, ..., lmax ; find an initial solution x ; choose a stopping criterion
Repeat the following sequence till the stopping criterion is met:

(1) Set l = 1;
(2) Repeat the following steps until l = lmax :

Step 1 (Shaking): Generate x ′ ∈ Nl at random;
Step 2 (Local Search): Apply a local search method starting with x ′

as initial solution and denote by x ′′ the obtained local optimum ;
Step 3 (Move or not): If the local optimum x ′′ is better than the
incumbent x ,

then move there (x ← x ′′) and continue the search with N1
otherwise set l = l + 1 (or if l = lmax set (l = 1);

Go back to Step 1.
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A Variable Neighborhood Search Approach for Solving
the GVRP

Some questions concerning the selection of the neighborhood
structures are:

What properties of the neighborhoods are mandatory for the
resulting scheme to be able to find a globally optimal or
near-optimal solution?
What properties of the neighborhoods will favor finding a
near-optimal solution?
Should neighborhoods be nested? Otherwise how should they be
ordered?
What are desirable properties of the sizes of neighborhoods?

Petrică C. Pop (Technical University of Cluj-Napoca) GVRP 6th March 2013 19 / 47



A Variable Neighborhood Search Approach for Solving
the GVRP

Some questions concerning the selection of the neighborhood
structures are:

What properties of the neighborhoods are mandatory for the
resulting scheme to be able to find a globally optimal or
near-optimal solution?
What properties of the neighborhoods will favor finding a
near-optimal solution?
Should neighborhoods be nested? Otherwise how should they be
ordered?
What are desirable properties of the sizes of neighborhoods?
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A Variable Neighborhood Search Approach for Solving
the GVRP

To avoid being blocked in a valley the union of the neighborhoods
around any feasible solution x should contain the whole feasible
set:

X ⊆ N1(x) ∪N2(x) ∪ ... ∪Nkmax (x), ∀ x ∈ X

These neighborhoods may cover X without necessarily
partitioning it, which is easier to implement, e.g. when using
nested neighborhoods, i.e.

N1(x) ⊂ N2(x) ⊂ ... ⊂ Nkmax (x), ∀ x ∈ X
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A VNS Approach for Solving the GVRP

The local-global approach
The local-global approach is a natural technique to tackle the
generalized network design problems and it takes advantages
between them and their classical variants.
The approach aims at distinguishing between global connections
(connections between clusters) and local connections
(connections between nodes belonging to different clusters).
Given a collection of r global routes of form (V0,Vk1 , ...,Vkp) in
which the clusters are visited, we show that the best feasible route
R∗ (w.r.t cost minimization), i.e. a collection of r generalized
routes visiting the clusters according to the given sequence can
be done in polynomial time, by solving the following r shortest
path problems.
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A VNS Approach for Solving the GVRP
The local-global approach

We consider paths from 0 to 0′, that visits exactly one node from
each cluster Vk1 , ...,Vkp , hence it gives a feasible generalized
route.
Conversely, every generalized route visiting the clusters according
to the sequence (V0,Vk1 , ...,Vkp) corresponds to a path in the
layered network from 0 ∈ V0 to 0′ ∈ V0.
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A VNS Approach for Solving the GVRP

The adapted Clarke-Wright heuristic

To compute a feasible solution for the GVRP problem, we replace
all the nodes of a cluster Vi , ∀i ∈ {1, ..., k} by a node denoted V w

i
and representing the weighted arithmetic mean of the nodes
belonging to Vi . The cluster V0 contains already one node.
Next we use the Clarke-Wright heuristic in order to find a relatively
good solution for the VRP defined on the weighted graph.
This algorithm uses the concept of savings to rank merging
operations between routes, where the savings is a measure of the
cost reduction obtained by combining two small routes into one
larger route.
Having the sequences in which the clusters are visited, we use the
local-global procedure in order to find the collection of best
generalized routes, i.e. an initial feasible solution of the GVRP.
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A VNS Approach for Solving the GVRP
Neighborhoods

Our VNS algorithm applies 8 types of neighborhoods, each of
them focusing on different aspects and properties of the solutions
to the GVRP.
We divided these neighborhoods into two classes depending if
they operate on a single route or if they consider more than one
route simultaneously.
All the considered neighborhoods are defined at the level of the
global graph.
The neighborhoods from the first class are obtained by moving
one or more clusters from one position in the global route to
another position in the same route and are called intra-route
neighborhoods.
We considered in our VNS three such neighborhoods: Two-opt
neighborhood, Three-opt neighborhood and Or-opt neighborhood.
The moves defined within the intra-route neighborhoods are used
in order to reduce the overall distance.
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A VNS Approach for Solving the GVRP

Neighborhoods

The other class, called inter-route neighborhoods work with two
global routes.
They are used in order to reduce the overall distance and in some
cases they can reduce as well the number of vehicles.
We considered in our VNS five such neighborhoods: 1-0
Exchange neighborhood, 1-1 Exchange neighborhood, 1-2
Exchange neighborhood, Relocate neighborhood and
Cross-exchange neighborhood.
For each candidate solution provided by any of the mentioned
neighborhoods, we apply the local-global procedure in order to
find the best collection of routes (w.r.t. cost minimization) visiting
the clusters according to the given sequences.
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A VNS Approach for Solving the GVRP
Two-opt neighborhood

In the case of the GVRP, in a Two-opt neighborhood two global
arcs corresponding to two arcs belonging to a single route are
replaced by two other global arcs in order to improve the total cost
of the route.
The size of the Two-opt neighborhood is quadratic (w.r.t. the
number of clusters) and there is only one proper move type.

Figure : Example showing a two-opt exchange move
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A VNS Approach for Solving the GVRP
Three-opt neighborhood

The Three-opt neighborhood extends the Two-opt neighborhood
and involves deleting three arcs in a route and reconnecting the
three remaining paths in all other possible ways, and then
evaluating each of the reconnecting methods in order to find the
optimum one.
The size of the Three-opt neighborhood is cubic and there are
three proper move types.

Figure : Example showing a three-opt exchange move
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A VNS Approach for Solving the GVRP
Or-opt neighborhood

In the case of the GVRP, in a Or-opt neighborhood a sequence of
consecutive customers, usually one, two or three, are relocated
within the route.
The size of the Or-opt neighborhood is quadratic with the
condition that the length of the sequence is bounded.

Figure : Example showing an Or-opt exchange move

Petrică C. Pop (Technical University of Cluj-Napoca) GVRP 6th March 2013 28 / 47



A VNS Approach for Solving the GVRP
1-0 Exchange neighborhood

Given a pair of global routes corresponding to a current solution of
the GVRP, the 1-0 exchange neighborhood simply moves a cluster
from one global route to the other, by replacing three global arcs.
Then using the local-global procedure it is determined the
corresponding best feasible solution of the GVRP w.r.t. the new
collection of global routes.

Figure : Example showing a 1-0 Exchange move
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A VNS Approach for Solving the GVRP
1-1 Exchange neighborhood

Given a pair of global routes corresponding to a current solution of
the GVRP, the 1-1 exchange neighborhood swaps the positions of
a cluster pair belonging to two different global routes, by removing
four global arcs and creating four new ones.
Then again using the local-global procedure it is determined the
corresponding best feasible solution of the GVRP w.r.t. the new
collection of global routes.

Figure : Example showing a 1-1 Exchange move
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A VNS Approach for Solving the GVRP

1-2 Exchange neighborhood

Given a pair of global routes corresponding to a current solution of
the GVRP, the 1-2 exchange neighborhood swaps the positions of
a cluster belonging to one global route with two consecutive
clusters from the other global route, by removing four global arcs
and creating four new ones.

Figure : Example showing a 1-2 Exchange move
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A VNS Approach for Solving the GVRP

Relocate neighborhood

Given a pair of global routes corresponding to a current solution of
the GVRP, the relocate neighborhood simply moves a sequence of
2,3 or 4 global arcs from one global route to another one.

Figure : Example showing a Relocate move
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A VNS Approach for Solving the GVRP
Cross-exchange neighborhood

Given a pair of global routes corresponding to a current solution of
the GVRP, the cross-exchange neighborhood involves the
exchange between two sequences of arcs from the two global
routes.
Each sequence must contain the same number of required arcs,
maximum three in our case.
Then using the local-global procedure we determine the
corresponding best feasible solution of the GVRP and check if we
get an improvement of the solution.

Figure : Example showing a cross-exchange for k = 2
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A VNS Approach for Solving the GVRP

Our algorithm starts from an initial feasible solution x generated by a
heuristic adapted from the Clarke-Wright heuristic and with the set of
the following 8 nested neighborhood structures:

1-0 Exchange neighborhood (N1);
1-1 Exchange neighborhood (N2);
1-2 Exchange neighborhood (N3);
Relocate neighborhood (N4);
Two-opt neighborhood (N5);
Three-opt neighborhood (N6);
Or-opt neighborhood (N7);
Cross-Exchange neighborhood (N8).
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A VNS Approach for Solving the GVRP

Then a point x ′ at random (in order to avoid cycling) is selected within
the first neighborhood N1(x) of x and a descent from x ′ is done with
the local search routine. This will lead to a new local minimum x ′′. At
this point, there exists three possibilities:

1) x ′′ = x , i.e. we are again at the bottom of the same valley and we
continue the search using the next neighborhood Nl(x) with l ≥ 2;

2) x ′′ 6= x and f (x ′′) ≥ f (x), i.e. we found a new local optimum but
which is worse than the previous incumbent solution. Also in this
case, we will continue the search using the next neighborhood
Nl(x) with l ≥ 2;

3) x ′′ 6= x and f (x ′′) < f (x), i.e. we found a new local optimum but
which is better than the previous incumbent solution. In this case,
the search is re-centered around x ′′ and begins with the first
neighborhood.
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A VNS Approach for Solving the GVRP

Test instances

We conducted computational experiments on two sets of instances.

The first set of instances were generated in a similar manner to
that of Fischetti et al. [5] who have derived the GTSP instances
from the existing TSP instances. These problems were drawn
from TSPLIB library test problems and contain between 51 and
101 customers (nodes), which are partitioned into a given number
of clusters, and in addition the depot.
The second set of instances used in our computational
experiments were generated through an adaptation of the existing
instances in the CVRP-library.
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A VNS Approach for Solving the GVRP
Computational results

The testing machine was an Intel Core i7-3612QM and 8.00 GB
RAM with Windows 8 as operating system.
The VNS algorithm has been developed in Microsoft .NET
Framework 4 using C #.

Table : Best values and computational times - ACS, GA and VNS algorithms
for GVRP

Problem ACS Time ACS GA Time GA VNS Time VNS
11eil51 418.85 212 237.00 7 233.910 0.656

16eil76A 668.78 18 583.80 18 309.299 1.545
16eil76B 625.83 64 540.87 95 290.594 0.321
16eil76C 553.21 215.00 336.45 50 237.876 0.197
16eil76D 508.81 177.00 295.55 12 232.296 0.651
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A VNS Approach for Solving the GVRP
Computational results

Table : Computational results on small and medium instances with θ = 3

Instance LB ALNS ITS HA VNS
A-n32-k5-C11-V2 386 386 386 386 385.911
A-n33-k5-C11-V2 315 318 315 315 315.762
A-n33-k6-C11-V2 370 370 370 370 370.658
A-n34-k5-C12-V2 419 419 419 419 419.102
A-n45-k6-C15-V3 474 474 474 474 474.193
A-n55-k9-C19-V3 473 473 473 473 472.193
B-n31-k5-C11-V2 356 356 356 356 355.422
B-n34-k5-C12-V2 369 369 369 369 369.315
B-n35-k5-C12-V2 501 501 501 501 501.032
B-n39-k5-C13-V2 280 280 280 280 279.580
B-n50-k7-C17-V3 393 393 393 393 393.715
P-n16-k8-C6-V4 170 170 170 170 169.96
P-n20-k2-C7-V1 117 117 117 117 117.306
P-n21-k2-C7-V1 117 117 117 117 117.070
P-n22-k2-C8-V1 111 111 111 111 111.194
P-n23-k8-C8-V3 174 174 174 174 175.019

P-n50-k7-C17-V3 261 261 261 261 261.101
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A VNS Approach for Solving the GVRP
Computational results
Next figure shows the behavior of the VNS against the required time
(in seconds) on instance A-n45-k6-C15-V3 when GVRP is solved.

Figure : Behavior of the VNS based heuristic when solving the
A-n45-k6-C15-V3 instance of the GVRP
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A VNS Approach for Solving the GVRP
Computational results

We can conclude that the convergence of VNS is very fast, after
2.986 seconds (in the first iteration) the solution is much improved
from 1028.777 to 531.112 and than after 28.411 seconds an
optimum solution of value 474.193 is reached.
Overall the proposed VNS algorithm can be seen successful
providing high-quality solutions in reasonable computational
running times. The success of our VNS approach consists in the
selection and properties of the neighborhoods that are covering
the whole feasible set.
Next we give an example of the progress of the objective function
of the GVRP using our developed VNS algorithm starting with an
initial solution and using shaking and local search strategies
described in Algorithm 1. The instance used is B-n50-k7-C17-V3
and contains 50 nodes partitioned within 17 clusters which are
visited by 3 vehicles.
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Conclusions and future work

We have presented some aspects concerning the generalized
vehicle routing problem including:

I complexity results,
I an efficient transformation into the classical VRP,
I integer programming formulations,
I a VNS algorithm for solving the GVRP.

Possible directions of research:
I design of hybrid algorithms,
I Efficient Neighborhood Structures for Variable Neighborhood

Search,
I etc.
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Petrică C. Pop (Technical University of Cluj-Napoca) GVRP 6th March 2013 43 / 47



Conclusions and future work

We have presented some aspects concerning the generalized
vehicle routing problem including:

I complexity results,
I an efficient transformation into the classical VRP,
I integer programming formulations,
I a VNS algorithm for solving the GVRP.

Possible directions of research:
I design of hybrid algorithms,
I Efficient Neighborhood Structures for Variable Neighborhood

Search,
I etc.
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