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Abstract. We present the 3DEarDB, a multi-model ear database, characterized 

by different types of ear representation, either 2D or 3D, depending on the ac-

quisition device used. The main objective is to provide the biometrics communi-

ty with a unified tool for testing and comparing classification algorithms not on-

ly on 2D intensity and/or depth images, or videos, but also on detailed 3D mesh 

models of human ears. The 3DEarDB features accurate 3D mesh models of 

right ear captured from more than 100 subjects, with a resolution of 1 mm and 

an accuracy of 0.05 mm, collected via the VIUscan 3D laser scanner, available 

at the Smart Lab of IICT-BAS, in the AComIn project frames. Two more ear 

acquisition modalities are also included: 3D Kinect ear depth maps and 2D 

high-definition video clips, associated to the basic mesh models. To extend 

3DEarDB compatibilities with known methods for 2D/3D ear detection and/or 

recognition, we provide two more ear model types. Namely, a set of 2D ear in-

tensity projections (of different orientations and/or lightening directions), and a 

set of 2D depth map projections can be generated by demand from the basic 3D 

ear models. Finally, we report about preliminary experiments conducted by 

means of Extended Gaussian Image approach that confirm the consistency of 

the proposed 3D-Ear-Data-Base. 

Keywords: 2D and 3D Ear Database ∙ 3D Mesh Ear Models ∙ Ear Biometrics ∙ 

Extended Gaussian Image (EGI)  

1 Introduction 

The usage of biometric identifiers as a reliable and convenient way to verifying a per-

son’s identity has become common worldwide in the last decade, with particular re-

gard to the most established ones like fingerprint, face and, more recently, iris. A key 

factor in diffusion of a biometric entity is its acceptability, since this characteristic 

directly affects the range of applications and the extent of the provided advantages in 

the context of both validation and identification [14]. In addition, aspects like stability 

over time and reduced intra class variations have been proved relevant in determining 

the success of biometrics-based id-check solutions. To these regards, ear seems to be a 

convenient biometric feature since it combines good distinctiveness, as indirectly 

proved by the high recognition accuracy achieved [22], [37], [40], with high accepta-
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bility (since is captured without the need for a physical contact) and permanence. The 

human ear was first hypothesized as a salient identifier in the end of XIX century by 

the French criminologist A. Bertillon [3], but only in 1949 A. Iannarelli proposed, 

with a more scientific approach, a set of twelve measurements characterizing the ear 

geometry [24]. The clear advantages in using ear biometrics are related to its tridimen-

sional (3D) structure protruding from the overall head surface/profile (when observed 

frontally) that allows for simple and contactless capture by means of 2D and 3D tech-

niques. Ear is characterized by easily recognizable ridges and valleys, whose configu-

ration is relatively immune to variation due to ageing [13]. The almost complete ab-

sence of shape changes represents another advantage of this biometrics whose main 

intra-class variations derive by occlusions caused by hair, hats, earrings, etc., [15].  

Though the number of contributions delivered by the research community on the 

topic of ear recognition are not comparable to the effort produced so far for face, fin-

gerprint or even iris, many different methods and algorithms have been proposed with 

both 2D and 3D approaches over the last fifteen years. 2D methods have exploited a 

variety of descriptors, including Principal Component Analysis (PCA) [8], [35], Inde-

pendent Component Analysis (ICA) [42], Active Shape Model (ASM) [41], sparse 

representations [29], force fields [21, 22, 23], ear geometries [10, 11], Generic Fourier 

Descriptor (GFD) [1], wavelet transforms [19], [34, [37], Local Binary Patterns (LBP) 

[28], Gabor filters [38] and Scale-Invariant Feature Transform (SIFT) [16], [27].  

The first 3D method [9] was proposed in 2004 and exploited the Local Surface 

Patch (LSP) representation and the Iterative Closest Point (ICP) algorithm, that was 

also used [25], [39, 40] for matching ears models obtained as range images or 3D 

mesh. A 2.5D approach was explored using surveillance videos and pseudo 3D infor-

mation extracted by means of Shape-from-Shading (SFS) scheme [6]. It is worth to 

mention also two recent approaches to 3D ear recognition, based on the EGI represen-

tation of 3D ear models [7], and on the 2D appearance 3D multi-view approach [17], 

in which additional related works are surveyed. A detailed and recent survey on Ear 

processing and recognition can be found in [2], as well as in [30] and [32]. 

A crucial aspect of the research around ear biometrics is represented by the availa-

bility of public ear databases to be used as a reference to test and stress proposed 

methods on a common set of images captured in known conditions, and to highlight 

the strengths and the weaknesses of each method and/or approach in terms of recogni-

tion accuracy and robustness. To this regard, a number of ear datasets have been pub-

licly released through the last ten years, along with the research works that led to their 

creation. They typically provide 2D pictures of the ear(s) isolated or as a part of face 

profiles (mostly captured in laboratory), and in a limited number of cases also 3D 

scans of the face region near to the ear. We provide details on the existing ear datasets 

in Section 2 of this paper. Since, currently there is still a lack of a multi-model ear 

database, providing a full spectrum of capturing modalities for each of the enrolled 

subjects, in this paper we present such a kind of ear dataset that features high resolu-

tion 3D scans for each subject (both, row data and a segmented, cleaned polygonal 

mesh), also high resolution color pictures, high resolution video capture from variable 

angles, color pictures captured by last-generation mobile devices and other indirect 

modalities derived by the 3D data (2D intensity, and depth images).  

The rest of the paper is organized as follows. Section 2 presents a description of 

the existing, publicly available, ear datasets. Section 3 provides a detailed description 



of a new dataset developed with regard to all the provided models and their capture. 

Section 4 presents the results of the first batch of experiments conducted on the pro-

posed dataset and, finally, Section 5 draws some conclusions.  

2 Publicly Available Ear-Specific Datasets – a Brief Review 

As recalled in the previous section, there is a small number of publicly-available ear-

specific datasets released so far, at least if we do not consider well known face data-

base like, the FERET database [31], the CAS-PEAL database [18]. The UMIST data-

base [48], the NIST Mugshot Identification Database (MID) [45] or the XM2VTS 

database [51] which, though not originally aimed at ear biometrics, have been used 

and cited in literature mostly for testing ear detection algorithms. The ear-specific 

datasets are the AMI Ear Database [43], the UBEAR dataset [33], the University of 

Notre Dame (UND) databases [49], the University of Science and Technology Beijing 

(USTB) Databases [50], as well as the most recent OpenHear database [46], and the 

SYMARE database [47]. They are briefly described in the following lines. 

AMI Ear Database [43] consists of ear images collected from students, teachers 

and staff of the Computer Science department at Universidad de Las Palmas de Gran 

Canaria (ULPGC), Las Palmas, Spain. The 700 images provided have been captured 

solely in an indoor environment from 100 different subjects in the age range of 1965 

years. For each individual, seven images (six right ear images and one left ear image) 

are taken under the same lighting conditions, at a capture resolution of 492702 pix-

els, with the subject seated at a distance of about 2 meters from the camera. Five of 

the captured images are right side profile (right ear) with the individual facing for-

ward, looking up and down, and looking left and right.  

 
 BACK   FRONT  UP  DOWN   LEFT   RIGHT   ZOOM 

Fig. 1. Seven samples of two subjects captured from different directions (from AMI dataset) 

 

UBEAR Dataset [33] represents the result of a research study focused on captur-

ing ear images on the move in uncontrolled conditions, including ample variations of 

posing, lighting and presence of occlusions, to the aim of providing a real-world set of 

samples that should result very challenging for detection and recognition algorithms. 

The dataset is built by means of four high-resolution (1280960 pixels at 15 fps) vid-

eo captures, two for each ear across two different sessions, requiring each subject to 

undergo the same enrollment protocol. From each video 17 frames (5 frames for step-

ping ahead and backwards + 12 frames for head movements in four directions, name-

ly, 3 upwards, 3 downwards, 3 outwards, and 3 towards) are selected for each of the 

126 subjects, acquired of whom 44.62% are males and 55.38% are females. The result 

database contains 4430 uncompressed gray-scale images, a few is shown in Fig. 2.  



 

Fig. 2. Samples of different posing in the UBEAR dataset 

 

UND Databases [49] of the University of Notre Dame include a variety of bio-

metric data in various modalities, organized in collections. The following four collec-

tions are relevant for ear biometrics:  

 Collection E: 464 visible-light face side profile (ear) images from 114 human 

subjects captured in 2002. 

 Collection F: 942 3D (+ corresponding 2D) profile (ear) images from 302 human 

subjects captured in 2003 and 2004. 

 Collection G: 738 3D (+ corresponding 2D) profile (ear) images from 235 human 

subjects captured between 2003 and 2005. 

 Collection J2: 1800 3D (+ corresponding 2D) profile (ear) images from 415 hu-

man subjects captured between 2003 and 2005. 

USTB Databases [50] of the University of Science and Technology Beijing rep-

resent four databases dedicated to ear biometrics: 

 Image Database I (dated: July – Aug 2002) contains 180 grayscale images of right 

ear from 60 subjects, each one photographed three times including one frontal im-

age, another one with slight angle and one more with different lighting condition.  

 Image Database II (dated: Nov 2003 – Jan 2004) contains 308, 300400 pixels, 

24bit color images of right ear from 77 subjects, each one photographed four times 

with one profile image, two different form angles and one with different lighting 

conditions.  

 Image Database III (dated: 20 Nov – 30 Dec 2004) contains two ear datasets, a 

dataset with regular ear images and another one with occluded ear images. The 

first dataset includes right side profiles captured at 768576 pixels, 24 bit colors 

from 79 subjects captured from variable rotations: 22 rotation steps to the right 

and 18 to the left. The second dataset contains 144 images of partially occluded 

ears from 24 subjects. They obey three conditions: partial occlusions (disturbance 

from some hair), trivial occlusions (little hair), and regular (natural) occlusions.  

 Image Database IV (dated: Jun 2007 – Dec 2008) contains both grayscale and 

color ear images, 500400 pixels each, from 500 subjects acquired from multiple 

angles by 17 CCD cameras distributed around the volunteer at a 15° step from 

each other. 
 

OpenHear, the Open head and ear database [46], is an open database of 3D sur-

face scans of human heads and ears. Its purpose is to be used for acoustical simulation 

in aid design. The dataset contains head and ear 3D models of 20 subjects (10 men, 7 

women, 1 baby boy, and 2 girls), see part of them in Fig. 3. The scans (available in 

VTK format) are acquired using a 3dMD cranial scanner, placed at the 3D Craniofa-

http://www.vtk.org/


cial Image Research Laboratory at the University of Copenhagen. The initial 3D point 

clouds are created via 3dMD stereo-algorithms, while surface reconstruction are ob-

tained using the authors algorithm to create complete head and ear models from initial 

captured data. 

 

 

Fig. 3. Samples from the current version of OpenHear dataset 

 

SYMARE [47], the Sydney York Morphological and Acoustic Recordings of Ears 

database, supports acoustics research exploring the relationship between the morphol-

ogy of human outer ears and their acoustic filtering properties for purpose of improv-

ing the individualization of 3D audio for personal audio devices in the future. The 

database includes multiple mesh models (upper torso, head and ears) at varying reso-

lutions for 61 listeners (48 male and 13 female) in order to accommodate acoustic 

stimulations at different frequencies. The 3D data are collected using a Philips 3T 

Achieva MRI scanner. For each of the 61 subjects in the database, high-resolution 

(sub-millimeter) surface meshes are provided for: (i) the head and ears, (ii) the head, 

upper torso and ears, (iii) the head and upper torso (no ears), (iv) the separated left 

and right ears, see Fig. 4. The number of surface elements involved in an average 

head and torso mesh is about 130 K elements. 

 

 

Fig. 4. Samples from SYMARE: the four types of surface meshes provided per subject 

3 Overview of Our 3D Ear Database 

The announced 3D Ear Database, called here 3DEarDB, was collected mainly during 

the middle of 2015 at the Institute of Information and Communication Technologies 

at Bulgarian Academy of Sciences (IICT-BAS) in the frames of AComIn
1
 project. We 

have gathered more than 100 precise 3D mesh models of right ears of persons, who 

differ in gender as well as in age (2565). A scan resolution of 1 mm between neigh-

boring 3D points and accuracy of 0.05 mm for each 3D point was chosen for simplici-
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ty of the data gathering, considering it to be enough for near future experiments. The 

first version of 3DEarDB (dated May, 2014) contained 3D ear models of the same 

precision but for 11 persons only, and was designed for initial experiments with both 

our approaches to 3D ear classification and/or recognition, [7], [17]. 

The recent objective of 3DEarDB is to provide, in a consistent way, many differ-

ent output formats for the given human (subject, person) ear represented. These in-

cludes: (i) a raw 3D ear mesh model, (ii) a processed 3D ear mesh, (iii) Kinect 3D ear 

depth (range) images, (iv) accompanying 2D ear video clips, (v) generated structures 

of 2D ear intensity projections, and (vi) generated structures of 2D ear depth images. 

This consistent variety of ear capturing formats could be very useful for ear biomet-

rics community to test and compare algorithms accuracy on possibly different input 

scenarios – from the ideal case of precise (and static) 3D mesh to more realistic (and 

dynamic) case of 2D video data and/or still images. 

By our best knowledge, cf. also Section 2, among the existent Ear Datasets, the 

only DB, which provides corresponding 2D and 3D data for the same subject’s ear is 

that of UND Collections F, G, and J2, [49]. The UND 3D ear data do not represent 

real polygonal 3D meshes, but only 3D range images containing depth information. 

Moreover, the ear video data, which could be used for performing 3D ear reconstruc-

tion as an alternative to 2D range images, are missing there. The recent 3D databases, 

OpenHear [46] and SYMARE [47], really concern 3D ear data, but they are not de-

signed especially for visual ear biometrics. Besides, neither OpenHear (only 20 face 

models), nor SYMARE even with its 61 listeners recorded and scanned, could be 

considered statistically enough representative at present. 

An essential requirement of the large biometrics community is that such a DB has 

to top 100, or more, persons represented. We also consider ear biometrics based on 

video data as the most realistic case according to the contemporary technology devel-

opment, especially if it is intended to be build-in the portable electronics of personal 

use. For this reason, it is useful to provide accurate 3D ear mesh representation as 

reference for evaluation of 3D video reconstruction errors, and for comparing between 

ideal and real recognition performances of investigated descriptors and classifiers. 

Because of we consider colors a non-informative ear feature for classification, we do 

not scan it at present. Colors are kept in the accompanying 2D ear video clips. 

Next section contains a more detailed description of our multi-model Ear DB, 

considering two main types of ear data – hardware acquired and software generated. 

Hardware acquired ear representations are composed by raw and post-processed 3D 

ear meshes (from 3D laser scanners), 3D depth maps (from Kinect cameras), and 2D 

Video clips (from photo cameras). The software generated ear representations from 

each 3D mesh model are also two types at present, namely: (i) structures of images, 

i.e. 2D intensity projections with different lightening and/or orientation (using 

MeshLab
2
); and (ii) corresponding structures of 2D depth map projections with dif-

ferent orientation (using Wolfram Mathematica
3
).  

                                                           
2  http://meshlab.sourceforge.net/ 
3  https://www.wolfram.com/mathematica/ 
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3.1 Data Acquisition 

The three types of devices we use to collect ear data are described below. Only right 

ears data are gathered, and only one 3D ear model per subject is represented in 

3DEarDB, because of limited people resource, for the time being. For more detail on 

this matter see also discussions in Sections 4.2 and 5. 

VIUscan 3D Laser Scanner. This hand-scanner of Creaform (Fig. 5c) was bought by 

the AComIn project for the Smart Lab of IICT-BAS in the end of 2013. Well comput-

er assisted, it can reproduce a 3D mesh model of the scanned (solid) as well as respec-

tive textures and/or colors. Although, we have not used the maximal resolution (0.1 

mm) and any color data, they could be very useful in other applications, where 3D 

objects have variable texture with fine surface details, [44].  

This type of scanners require specific markers (retro-reflective targets) regularly 

situated on or around the object of scanning. The scanner needs to "see" at least four 

targets, which should not move in respect to the object of scan. VIUscan uses these 

targets to position itself in the space. To facilitate our work, we created a special 

“helmet” of cartoon with enough markers on it. The helmet is to be placed on the 

subject’s head around the ear before scanning (Fig. 5a, b).  

Omitting of color data makes the procedure of scanning faster, up to 10 min per 

ear, as well as more comfortable, because of no need of special lightening  possible 

shadows do not disturb scanning. 

 

    

Fig. 5. a) The cartoon “helmet”; b) A person under scanning; c) VIUscan 3D scanner 

Kinect Xbox One Sensor.
4
 This motion sensor of Microsoft is an upgraded version 

of its predecessor for Xbox 360. Available as a standalone version since October 

2014, it has an infrared array and a 512424 pixels time-of-flight camera that resolves 

scene depth and allows for motion tracking and gesture recognition. This new Kinect 

also includes a Full HD (19201080) video camera with increased field of view. 

We plan to use Kinect for obtaining real depth maps of ears and to apply its ac-

companying software for 3D reconstruction (using video and/or depth maps).  

Olympus Photo Camera.
5
 The Olympus SH-21 photo camera with its 16 MP CMOS 

sensor of 1/2.3" format has been used for producing Full HD (19201080) video clips 

for each subject’s ear, generally in a MP4 format file.  
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3.2 Raw (Unprocessed) Ear Data 

A raw scanned ear, as shown on Fig. 6b, appears from VXelements software usually 

accompanying VIUscan scanners, [44]. The primary output file format is CSF, which 

size, in our case is about 64 MB per ear. VXelements help to convert each CSF to an 

OBJ format (an ASCII text) file for the ear geometry, and to an accompanying BMP 

file for the ear colors. In Fig. 6a we illustrate a colored ear scan, only for giving an 

idea of how it looks like, although not using it for now, as already mentioned. We use 

OBJ files at next (half-tone) post-processing, see Fig. 6b. Of course, color data could 

be successfully used for an automatic 3D ear segmentation, what is outside this work.  

       

Fig. 6.  a) Raw scanned ear with color data;         b) Only the surface of the raw ear data 

3.3 Raw Ear Data Post-processing 

To create a complete and appropriately smooth 3D mesh model for each ear, we de-

scribe post-processing of six steps using either VXelements [44] or MeshLab [12]. 

Step 1: Coarse Segmentation (by VXelements) 

 Apply the filter called Remove Isolated Patches on the input CSF data.  

 Perform coarse manual segmentation of the ear surface from the surrounding 

background using the Brush Selection, Reverse Selection, and Delete Facets tools.  

Step 2: Holes Filling (by VXelements) 

 Run the Optimize Surface reconstruction algorithm each time when choosing a 

different size of ear holes to be filled-in. This procedure is the most time consum-

ing, because of better results could not be predicted but experimented. 

 After filling the appropriate holes, save the result CSF file (its size here is about 

49 MB per ear). To continue with MeshLab processing, convert CSF to OBJ file 

that results in about 600 KB (per ear). 

Step 3: Fine Editing of Mesh-Facets (by MeshLab). It includes finer background 

segmentation, as well as removing unpleasant sharp peaks (Fig. 7a) in the current 3D 

mesh model resulting from the Optimize Surface tool of the previous step. Of course, 



the peak facets removal leads to new holes to fill-in (Fig. 7c), but of much smaller 

size (Fig. 7b), that is usually no problem for MeshLab. 

Step 4: Mesh Extra Smoothing (by MeshLab). After holes filling (Fig. 7c), the final 

step is smoothing the complete 3D object (Fig. 7d). The MeshLab function we prefer 

to this aim, is the HC Laplacian Smooth, based on the paper of Vollmer et al [36]. At 

this final stage of manipulation, each ear mesh consists of about 68 thousands of 

(triangular) facets, determined by about 34 thousands of vertexes (3D points). Omit-

ting the normal vectors data, considered here derivative and redundant ones for sim-

plicity, the size of the respective OBJ file is reduced up to about 240 KB (per ear).  

 

 

Fig. 7. a) Sharp peaks;  b) New holes created;  c) All holes filled;  d) Final smooth 

Step 5: Mesh Decimation and Subdivision (by MeshLab). This step is necessary 

for creation of test data for our EGI classification approach [7], which we use to prove 

experimentally the 3DEarDB functionality. The MeshLab function for increasing the 

facets number (Fig. 8c) is called Subdivision Surfaces: LS3 Loop, based on [4], and 

the function reducing this number (Fig. 8a) is Quadratic Edge Collapse Decimation.  

           

Fig. 8. a) Decimated facets; b) Original scan resolution; c) Subdivided (refined) facets 

Step 6: Geometric Normalization (in MATLAB). It includes translation, orientation 

and scale of each ear model separately: 

◊ Translate the Cartesian origin into the model barycenter, i.e. the averaged (x, y, z) 

coordinates of all 3D points (vertexes) of the mesh. After subtracting it from all 

vertexes, the new barycenter becomes (0, 0, 0).  



 

Fig. 9. A normalized ear model 

◊ Rotate Principal axes, i.e. the eigenvectors of the 

covariance matrix over the whole mesh (all the ver-

texes). To normalize by rotation, the vertexes are ro-

tated back to the already centralized Cartesian coor-

dinate system, see also Fig. 9. 

◊ Scale: The three eigenvalues (associated to principal 

axes, they should be already rotated) are used to nor-

malize the mesh model by scale, so that the bounding 

box of the model (or its equivalent ellipsoid) to reach 

predefined sizes, e.g. 1s (units). The three scale coef-

ficients (reciprocal to eigenvalues) for each model 

have to be saved, if the real ear size will be further 

essential. 

3.4 Kinect 3D Depth (Range) Images 

At present, we do not give 3D ear data gathered by a Kinect camera. Instead, we have 

generated 2D depth-map images from 3DEarDB, as described in Section 3.7. 

3.5 Full HD Ear Video Clips 

A 19201080 video is made over each ear, uniformly filming it by azimuth from -80° 

to +80°, for 3 different altitude rows (upper, central, and lower ones) towards the 

center of the ear frontal view (Fig. 10), in the same laboratory, immediately after the 

3D ear scan. Each clip is about 20 seconds long, at 30 fps that costs about 45 MB per 

clip, written in MP4 file format. 

 

a)      b)      c)  

Fig. 10. Representative frames for the three horizontal rows of an ear video clip: a) View from 

above; b) A central view; and c) View from bellow 

3.6 2D Intensity Projections 

The 2D ear projections are produced in MeshLab, by loading a number of layers, one 

for each 3D rotation of an ear. Then, 2D snapshots of all these layers are made and 

recorded in JPEG format. The artificial lightening chosen is frontal and coherent. 



2D Intensity Projections are taken according to a rotations scheme of 100 frontal 

view directions, uniformly distributed towards the ear barycenter, i.e. on 10 declina-

tions and 10 azimuths uniformly chosen in the interval            , cf. also Fig. 11. 

Of course, the angle step could be smaller or larger, in this way to manipulate the 

density of the resultant set of 2D projections, 

i.e. the size of output JPG file. 

This type of 3D ear representation, we call 

it Multi-view 3D modeling, has been devel-

oped for our experiments in [17]. We needed 

there a random access to the Multi-view da-

tasets, but the same datasets could be arbi-

trary ordered, e.g. top-down and left-right, 

like the video clips of Section 3.5. 

An illustration of ten 2D ear images gen-

erated from a 3D ear model (for a given cen-

tral row, cf. Fig. 11), is shown in Fig. 12. 

 

 

Fig. 12. 2D ear images from a row of the ear model rotation scheme, cf. also Fig. 11 

3.7 2D Depth Map Images 

The build-in functions of Wolfram Mathematica software was used to render 2D 

depth images from a 3D mesh, where instead of intensity values, the z-coordinates of 

the 3D points are recorded into the 2D image grid (Fig. 13). For consistence with 

previous section, the depth maps correspond to rotation scheme, illustrated on Fig. 11. 

 

 

Fig. 13. Ear depth maps under orthographic projections of a given 3D ear model 

3.8 Web Access to 3DEarDB 

The current version of 3DEarDB will be placed at a free of charge disposal of aca-

demic and non-profit research people interested in it. An extended description of the 

3DEarDB structure, build-in functions, other potentialities, and license agreements as 

well will appear on the web site of IICT-BAS very soon. 

 

Fig. 11. A scheme of multi-view 3D 

modeling of a given ear 



4 3DEarDB Consistency Experiments  

To test the current 3DEarDB functionality, we have experimented using our EGI 

based approach to ear classification and/or recognition [7]. The EGI representation 

squeezes appropriately the 3D mesh model data into a sphere, so that it can be visual-

ized and/or used like a 2D (histogram) image, and even like an 1D histogram, by an 

appropriate re-indexing of facets, e.g. by a spiral, see also [7]. 

The EGI (Extended Gaussian Image) was initially proposed by B.K.P. Horn, in 

1984, [20], see also [26]. Formally, the EGI of a 3D surface represents a histogram of 

all orientations of the modeled surface on a unit (Gaussian) sphere. Because of sur-

face usual representation by a discrete mesh, every facet from the modeling 3D mesh 

will be accumulated into the respective point on the Gaussian sphere, according to the 

unit normal vector and the area of each facet. I.e. the total weight of each EGI point 

equals the common area of all the mesh facets with the same normal vector direction. 

In practice, the Gaussian sphere is also discretized by a triangular tessellation, most 

often based on icosahedron (20 triangular facets). Depending on the level n of the 

sphere discretization, the number m of 3-angle-facets equals:                 .  

In our experiments, we have chosen the following three levels:    1, 2, 3 corre-

sponding to     80, 320, and 1280, see Table 1. 

Table 1. EGI Accuracy Results: True Recognition Rate (TRR) 

TRR [%] 
0.5 mm resolution 

(recalculated higher res.) 

1.0 mm 3D scanning 

resolution (the original) 
1.4 mm resolution  

(recalculated lower res.) 

noise [mm] 0.05 0.10 0.15 0.10 0.20 0.30 0.20 0.30 0.40 

~ % on width  0.16 0.31 0.47 0.31 0.62 0.93 0.62 0.93 1.24 

~ % on height 0.10 0.20 0.30 0.20 0.40 0.60 0.40 0.60 0.80 

~ % on depth 0.38 0.76 1.14 0.76 1.52 2.27 1.52 2.27 3.03 
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E2 100 84 25 100 83 27 100 80 44 

EBC 100 100 80 100 100 66 100 100 80 

1
2

8
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ts
 

E2 100 63 13 100 52 16 100 56 30 

EBC 100 100 62 100 95 48 100 96 78 

 

The opportunity of using the simpler EGI representation of 3D ear mesh models, 

in deviance of their convex/concave ambiguity, was experimentally demonstrated on 

a small ear DB, containing only 11 ears models, see [7]. The current version of our 

3DEarDB consists of more than 100 ear models that by our best knowledge is enough 

statistically representative. A hundred of these models, obtained at scan resolution of 

1mm, in similar laboratory conditions, and well post-processed as described here, has 

been experimented (see Table 1), similarly to [7], to believe one more again in the 

proposed 3DEarDB plausibility. For evaluation of similarity between EGI histograms, 

we have considered again the two geometrical scores: 



 the Euclidean distance:              
  

   
 

 , and 

 the Bray Curtis figure of merit [5]:     
          
 
   

          
 
   

 ,        ; 

where    and    are both the histogram bins under comparison (of the model and the 

input objects),               or 320, or 1280, see Table 1. 

4.1 Additional Notes to Table 1 

 Nearest-neighbor method has been performed for tests, where each processed 3D 

ear model is considered a center of a class, i.e. the number of classes now is 100. 

 Each 3D ear model in the 3DEarDB has been additively noised before using it for 

test recognition (retrieving the most similar one from 3DEarDB). Three versions 

of 3DEarDB, i.e. for 3 scan resolutions have been tested: 1.0 mm that is the origi-

nal one, and two more, 0.5 mm and 1.4 mm that are recalculated from the original 

(see Step 5 in Section 3.3).  

 The noise is artificially generated randomly in the used intervals of 3D scan, i.e. 

on average: width = 32.3 mm (on Ox), height = 50.3 mm (on Oy), and depth = 

13.2 mm (on Oz). These 3 intervals have been simply averaged using respective 

eigenvalues at the normalization processing (Step 6 in Section 3.3). 

  To be comparable with other (or further) experiments, the noise intervals are ex-

pressed in percents, respectively towards the averaged width, height and depth. 

4.2 Experiment Analysis 

The following generalization can be done analyzing the conducted experiments: 

♣ Experiments conducted on the current 3DEarDB (100 ear models) confirm the 

possibility of using the EGI representation for the unambiguous identification of 

ears nevertheless of their surface mixture of concavities and convexities. This is 

confirmed by the evaluated noise limits for each of the three experimented resolu-

tions (0.05, 0.10, 0.20 mm, see leftmost columns of Table 1, where TRR=100%) 

that well overcome 0.05 mm,  the declared accuracy of used 3D scanner VIUscan. 

♣ As expected, the Bray-Curtis distance (   ) is more robust to the corresponding 

level of noise, than the Euclidean distance (  ), giving higher TRR. 

♣ A "phenomenon" can be observed for the rest of results of the type TRR<100% (at 

higher level of noise, see middle and rightmost columns), where improvements of 

either EGI representation (80  320  1280) or 3D scanning resolution (0.5  

1.0  1.4) give an unexpected decrease of TRR at similar levels of noising. 

♣ This "phenomenon" of TRR behavior is considered outside the main positive re-

sult for 3DEarDB functionality. Besides of concavities-convexities-mixture of ear 

surfaces, it can be explained also with combinations of other nonlinearities, like: 

(i) triangulation irregularities of 3D models, (ii) EGI representation irregularities, 

(iii) smoothing effect of software manipulation of resolution, etc. 

♣ Because of the opportunities of reducing either the geometric resolution of 3D 

scanning or the complexity of EGI representation, are always approaching to real 

time processing, we will keep attention on this phenomenon in our future work. 



5 Discussion and Conclusion 

The current paper describes and proposes to the ear biometric research community a 

novel multi-model Ear Database, called 3DEarDB. It is composed from different cor-

responding sets of ear representations from about 100 subjects of Caucasian race ac-

quired by various capturing devices: 3D Laser Scanner, Kinect Xbox One sensor, and 

a Digital Photo Camera. 

The 3DEarDB distinguishes from the currently known similar DBs for its com-

pleteness in ear representations of different formats – 3D meshes, 3D depth (range) 

images, 2D video clips, 2D intensity projections. For this reason, it could be useful for 

comparative analyses among a large variety of known 2D/3D ear recognition ap-

proaches and new ones as well, based on the 3D mesh information itself. 

A few extra notes about the 3DEarDB near future: 

 The current 3DEarDB consists of more than 100 3D ear models. It will be system-

atically extended in accordance with the feedback from potential users from bio-

metric community in the country and abroad. 

 At present, the 3DEarDB consists of only one 3D ear model per subject. The op-

timal number of (repeated) models per subject will be evaluated soon on the base 

of a few model versions for a small number of subjects represented (by their right 

ear). The same is also intended for the left human ear.  

 In order to speed up the model acquisition, besides of Kinect camera, we are plan-

ning to experiment also with a 3D scanner of structured light type, perhaps on the 

price of some precision reduction. 
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